

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

Homomorphic Encryption Schemes using AES:
Techniques and Applications

1st Hind BOUHEDDA
Master SSI – ENSA Kenitra, Morocco

hind.bouhedda@uit.ac.ma

4th Achraf AZAHOUM
Master SSI – ENSA Kenitra, Morocco

achraf.azahoum@uit.ac.ma

2nd Salma DOUKKAR
Master SSI – ENSA Kenitra, Morocco

salma.doukkar@uit.ac.ma

5th Mouad JAOUANI
Master SSI – ENSA Kenitra, Morocco

mouad.jaouani@uit.ac.ma

3rd Otmane AMRAOUI
Master SSI – ENSA Kenitra, Morocco

otmane.amraoui@uit.ac.ma

Abstract- Homomorphic encryption schemes provide a
powerful mechanism for performing computations on
encrypted data without decrypting it. This capability holds
significant promise for enhancing the security and privacy of
sensitive information in various applications. In this paper,
we focus on exploring homomorphic encryption schemes
using the Advanced Encryption Standard (AES). We review
the fundamental principles of homomorphic encryption and
discuss the potential advantages and challenges of using AES
as the underlying cryptographic primitive. Furthermore, we
survey recent advancements in the field and highlight key
research directions for future exploration. Our analysis aims
to provide researchers and practitioners with insights into the
state-of-the-art techniques and opportunities for leveraging
homomorphic encryption with AES in real-world
applications.

Keywords- AES, Encryption, Homomorphic

I. INTRODUCTION
In order to enable safe computation on encrypted

data and protect the confidentiality and integrity of sensitive
information in a variety of situations, homomorphic
encryption has become a key technology. With
homomorphic encryption, computations can be done
directly on encrypted data, producing encrypted results that
can be decrypted to produce the same result as if the
computations were done on plaintext data. This is in contrast
to traditional encryption schemes, which make data
unreadable to unauthorized parties. This capability creates
new opportunities for secure computation outsourcing,
cooperative data sharing across trust boundaries, and
privacy-preserving data analysis. Finding a balance between
security, efficiency, and functionality is one of the main
issues in the design of homomorphic encryption schemes.

P. Paillier, “Public-key cryptosystems based on composite
degreeresiduosity classes,” EUROCRYPT 1999, LNCS, vol.1592, pp.223–238,
1999.

The Advanced Encryption Standard (AES) is a symmetric
encryption algorithm that has gained widespread adoption
due to its robust security features and seamless integration
on contemporary computing platforms.
High computing performance and strong security
guarantees can both be obtained by utilizing AES in
homomorphic encryption schemes. However, careful
consideration of AES's cryptographic properties and the
creation of appropriate algebraic structures are needed to
adapt it to support homomorphic operations. Homomorphic
encryption (HE) [1] is a kind of public key encryption that
allows computation over encrypted data with- out knowing
the secret key, and has several applications such as
delegated computation on cloud servers.
In this paper, we present an exploration of the combination
of homomorphic encryption with AES (Advanced
Encryption Standard) techniques, highlighting its
significance in preserving privacy and security in data
processing.
The background section provides an explanation of
homomorphic encryption principles, including its different
types such as partially homomorphic, somewhat
homomorphic, and fully homomorphic encryption. We also
provide an overview of the AES encryption algorithm,
including its block cipher structure, key sizes, and
cryptographic properties. Furthermore, we review previous
research on homomorphic encryption schemes and their
various use cases.
Moving on to the fundamentals, we delve into how
homomorphic encryption principles can be applied to AES
encryption. We discuss the challenges and considerations
involved in adapting AES for homomorphic operations.
Additionally, we provide an overview of existing
techniques and approaches for combining homomorphic
encryption with AES.

11

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

The subsequent section explores specific techniques and
methodologies for achieving homomorphic properties with
AES in detail. We discuss encryption schemes, such as
partially homomorphic or fully homomorphic encryption,
that utilize AES as the underlying cryptographic primitive.
We also evaluate the security, efficiency, and performance
characteristics of different AES-based homomorphic
encryption techniques.
In the applications section, we survey real-world
applications and use cases where homomorphic encryption
schemes using AES can be applied. We provide examples
of scenarios in data privacy, secure computation, cloud
computing, and other domains that benefit from the
combination of homomorphic encryption with AES.
Additionally, we showcase case studies or practical
implementations that demonstrate the effectiveness and
feasibility of AES-based homomorphic encryption in
various applications.
The article then addresses the challenges and future
directions in the field of AES-based homomorphic
encryption, highlighting areas for further research and
development.
Finally, we conclude by summarizing the key findings and
insights from the article, emphasizing the significance of
combining homomorphic encryption with AES in
enhancing privacy and security in data processing.

II. BACKGROUND
A. Homomorphic Encryption Definition:

Homomorphic comes from the Greek words for ‘same
structure’. It means that I can perform operations on things,
and the structure is preserved after a mapping.

The concept of homomorphic encryption was introduced
in [1], of which two of the authors are Ronald L. Rivest and
Len Alderman. The R and the A in RSA encryption.

 The most popular example for the use of homomorphic
encryption is where a data owner wants to send data up to the
cloud for processing, but does not trust a service provider
with their data. Using a homomorphic encryption scheme, the
data owner encrypts their data and sends it to the server. The
server performs the relevant computations on the data
without ever decrypting it and sends the encrypted results to
the data owner. The data owner is the only one able to decrypt
the results, since they alone have the secret key.

B. Homomorphic Encryption Types :
Ø Partially Homomorphic Encryption (PHE): In PHE

schemes, only one type of mathematical operation (either
addition or multiplication) can be performed on
encrypted data while preserving the homomorphic
property. For example, the RSA cryptosystem is partially
homomorphic with respect to multiplication.

Ø Somewhat Homomorphic Encryption (SHE): SHE
schemes allow a limited number of both addition and
multiplication operations to be performed on encrypted

data while maintaining the homomorphic property.
Examples include the Gentry-Halevi Smart (GHS)
scheme and the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme.

Ø Fully Homomorphic Encryption (FHE): FHE
schemes support an unlimited number of both addition
and multiplication operations on encrypted data. In
addition to addition and multiplication, fully
homomorphic encryption schemes can be used to
perform a wide range of operations, including
subtraction, division, comparison, boolean operations
(AND, OR, NOT), and more. This makes FHE schemes
Turing complete, meaning that any computable function
can be evaluated on encrypted data.

C. Overview of AES:
The DES key length was a mere 56 bits. And it turned out that
this isn’t nearly enough to keep encrypted information safe.
For example, a test by distributed.net and the Electronic
Frontier Foundation showed that DES can be easily cracked
in a little bit more than 22 hours. Keep in mind that this was
done in 1999, when computing power was far from what it is
now.
Today, a powerful machine can crack a 56-bit DES key in
362 seconds.
On the other hand, cracking a 128-bit AES encryption key
can take up to 36 quadrillion years.

AES is a symmetric encryption algorithm and a block cipher.
The former means that it uses the same key to encrypt and
decrypt data. The sender and the receiver must both know --
and use -- the same secret encryption key. This makes AES
different from asymmetric algorithms, where different keys
are used for data encryption and decryption. Block cipher
means that AES splits a message into smaller blocks and
encrypts those blocks to convert the plaintext message to an
unintelligible form called ciphertext.

AES uses multiple cryptographic keys, each of which
undergoes multiple rounds of encryption to better protect the
data and ensure its confidentiality and integrity. All key
lengths can be used to protect Confidential and Secret level
information. In general, AES-128 provides adequate security
and protection from brute-force attacks for most consumer
applications. Information that's classified as Top Secret --
e.g., government or military information -- requires the
stronger security provided by either 192- or 256-bit key
lengths, which also require more processing power and can
take longer to execute.

How does AES encryption work?

 To understand the way AES works, you first need to learn
how it transmits information between multiple steps. Since a
single block is 16 bytes, a 4x4 matrix holds the data in a single
block, with each cell holding a single byte of information.

The matrix shown in the image is known as a state array.
Similarly, the key being used initially is expanded into (n+1)

12

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

keys, with n being the number of rounds to
be followed in the encryption process. So
for a 128-bit key, the number of rounds is
16, with no. of keys to be generated being
10+1, which is a total of 11 keys.

Add Round Key: You pass the block data
stored in the state array through an XOR

function with the first key generated (K0). It passes the
resultant state array on as input to the next step.

Sub-Bytes: In this step, it converts each byte of the state array
into hexadecimal, divided into two equal parts. These parts
are the rows and columns, mapped with a substitution box (S-
Box) to generate new values for the final state array.

Shift Rows: It swaps the row elements among each other. It
skips the first row. It shifts the elements in the second row,
one position to the left. It also shifts the elements from the
third row two consecutive positions to the left, and it shifts
the last row three positions to th

Mix Columns: It multiplies a constant matrix with each
column in the state array to get a new column for the
subsequent state array. Once all the columns are multiplied
with the same constant matrix, you get your state array for the
next step. This particular step is not to be done in the last
rounde left.

III. PRELIMINARY

§ Basic Definitions and Properties:
Plaintext: Plaintext refers to the original, readable, and
unencrypted data or message that is to be encrypted.

Ciphertext: Ciphertext is the encrypted form of plaintext,
resulting from the application of an encryption algorithm and
a secret key. It appears as unintelligible gibberish and
requires the appropriate decryption key to revert it back to
plaintext.

Stream cipher: A stream cipher is a symmetric encryption
method where plaintext is combined with a pseudorandom
keystream, typically generated from a seed value, to produce
ciphertext. It encrypts data bit by bit, offering high-speed
processing and lower hardware complexity compared to
block ciphers, but may be vulnerable to attacks if the same
seed is reused.

Block cipher: A block cipher is a symmetric encryption
algorithm that operates on fixed-size blocks of data,
transforming each block into ciphertext independently. It
uses a cryptographic key to perform the encryption and
decryption processes.

Keywords:

Gen: Generates public and secret keys based on a security
parameter λ.

Enc: Encrypts a plaintext M using a public key pk,
producing a ciphertext C.

Dec: Decrypts a ciphertext C using a secret key sk,
resulting in either the original plaintext M or a failure symbol
⊥.

Eval: Evaluates an n-ary operation f on n ciphertexts

(C1, . . . , Cn) using the public key pk, producing either a
ciphertext or a failure symbol.

13

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

§ Symmetric Key Encryption:
The following three PPT stands for “probabilistic

polynomial- time” algorithms make up a symmetric key
encryption (SKE) scheme as follows

- Gen 1λ : Given a security parameter λ, it outputs an
encryption key K.

- Enc K, M : Given an encryption key K and a plaintext

M, it outputs a ciphertext C.

- Dec K, C : Given an encryption key K and a ciphertext
C as input, it outputs either a plaintext or an error symbol ⊥.

We require an SKE scheme to satisfy correctness: for any
K Gen 1λ , any plaintext M, and any C Enc K, M , we always
have M Dec K, C .

§ Asymmetric Key Encryption:
Asymmetric Key Encryption, also known as public-key

cryptography, operates quite differently from symmetric key
encryption. Instead of using a single key for both encryption
and decryption, it employs a pair of keys: a public key and a
private key. The basic operations involved in an asymmetric
key encryption scheme are as follows:

- Key Generation (Gen): Gen(1^λ): Given a security
parameter λ, this algorithm generates a pair of keys:
a public key (PK) and a private key (SK). The public
key is intended for encryption, while the private key
is kept secret and used for decryption.

- Encryption (Enc): Enc(PK, M): Given a public key
PK and a plaintext message M, this algorithm
produces a ciphertext C. The ciphertext is generated
in such a way that it can only be decrypted efficiently
using the corresponding private key.

- Decryption (Dec): Dec(SK, C): Given a private key
SK and a ciphertext C, this algorithm retrieves the
original plaintext message M. It's important to note
that decryption is computationally feasible only with
the private key corresponding to the public key used
for encryption.

The fundamental property of correctness still applies in
asymmetric key encryption:

- Correctness: For any key pair (PK, SK) generated
by Gen(1^λ), and for any plaintext message M, if C
= Enc(PK, M), then Dec(SK, C) = M.

This property ensures that messages encrypted with
a public key can be successfully decrypted only by
the corresponding private key, thus maintaining the
integrity and confidentiality of communication in
asymmetric key encryption systems.

2 T. El Gamal, “A public key cryptosystem and a signature schemebased on

discrete logarithms,” IEEE Trans. Inf. Theory, vol.31, no.4,pp.469–472,
1985.

FV Scheme: The FV scheme, named after its creators Shai
Halevi and Craig Gentry, is a homomorphic encryption
scheme that enables computation on encrypted data without
decryption. It supports both addition and multiplication
operations on encrypted data, maintaining privacy
throughout computations.

BGV Scheme: The BGV scheme, developed by Zvika
Brakerski, Craig Gentry, and Vinod Vaikuntanathan, is a
homomorphic encryption scheme. It focuses on efficiency
improvements and flexibility in parameter choices, allowing
for optimized performance and customizable security levels
in privacy-preserving computations.

Additive HE: Supports only addition operation.

Linear HE: Extends additive HE to include scalar
multiplication.

d-level HE: Supports operations on ciphertexts of different
levels, allowing for more complex computations.

§ How does HE works:
In HE, operations on ciphertexts are designed to

correspond to operations on plaintexts.

When performing operations on ciphertexts, the result is
encrypted and can be decrypted to obtain the result of the
corresponding operation on plaintexts [].2

For example, in additive HE, adding two ciphertexts
encrypted with the same public key corresponds to adding the
plaintexts they represent.

Similarly, in linear HE, scalar multiplication of a
ciphertext corresponds to scalar multiplication of the
plaintext it represents.

In d-level HE, operations are defined based on the levels
of ciphertexts, allowing for more flexibility in computations
while maintaining security properties. The ciphertext level
ensures that operations are performed correctly and securely.

IV. HOMOMORPHIC ENCRYPTION WITH AES:
FUNDAMENTALS

Homomorphic encryption applied to AES involves
implementing mathematical operations on ciphertexts in such
a way that when these operations are performed, []3 they
produce results that are consistent with the operations
performed on the plaintext before encryption. In other words,
the operations performed on encrypted data yield the same
results as if they were performed on the plaintext data
directly.

3 R. Canetti, S. Raghuraman, S. Richelson, and V. Vaikuntanathan,
“Chosen-ciphertext secure fully homomorphic encryption,” PKC 2017,

pp.213–240, 2017.

14

https://www.ijoa.ma/
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_8

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

One common approach to achieve homomorphic properties
with AES is to use fully homomorphic encryption (FHE)
schemes built on top of AES. FHE schemes, such as the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme or the Fan-
Vercauteren (FV) scheme, allow for arbitrary computations
on encrypted data. These schemes enable addition and
multiplication operations on ciphertexts, which correspond to
addition and multiplication operations on the plaintexts.

Under this framework, encryption involves converting
plaintexts into ciphertexts using AES encryption. Then, using
homomorphic properties, mathematical operations such as
addition and multiplication can be performed directly on the
ciphertexts. These operations are executed in such a way that
they preserve the desired properties of the plaintext data.

For instance, in a scenario where two parties wish to compute
the sum of their AES-encrypted data, they can use
homomorphic addition to perform this operation directly on
the ciphertexts. Similarly, if they need to perform
multiplication operations on the encrypted data,
homomorphic multiplication techniques can be applied.

This capability is invaluable in scenarios where data privacy
is critical, such as secure computation in cloud environments
or collaborative data analysis. It allows organizations to
securely outsource computations to untrusted servers without
compromising the confidentiality of their sensitive data. By
leveraging homomorphic encryption with AES,
organizations can ensure that their data remains encrypted
throughout computations, mitigating the risks associated with
exposing plaintext data to potential adversaries and
enhancing overall data privacy and security.

V. TECHNIQUES FOR AES-BASED HOMOMORPHIC
ENCRYPTION APPLICATIONS AND CHALLENGES

Achieving homomorphic encryption directly with AES
(Advanced Encryption Standard) is challenging due to AES's
symmetric nature, lacking inherent homomorphic properties.
However, various techniques have been explored to integrate
AES within a homomorphic encryption framework or to
achieve functionalities akin to homomorphic encryption
using AES. Here are some strategies:

A. Secure Multiparty Computation (SMC):
Secure Multiparty Computation (SMC) is a cryptographic
technique that enables multiple parties to jointly compute a
function over their private inputs without revealing those
inputs to each other. While AES itself doesn't directly support
SMC, it can be used within an SMC framework to provide
encryption of data involved in the computation. Here's how
SMC can be applied in an AES-based
homomorphic encryption setting:
Overview:
 Secure Multiparty Computation (SMC): SMC allows
multiple parties to compute a function on their private inputs
while keeping those inputs confidential.

 AES-based Homomorphic Encryption: AES is a symmetric
encryption algorithm that can be used to encrypt data within
an SMC framework, enabling secure computation on
encrypted inputs.

Working Principle:
 Data Encryption:
 Each party encrypts its private input using AES encryption
before sharing it with the other parties involved in the
computation. This ensures that the inputs remain confidential
during the computation.

Secure Computation:
 The parties perform the desired computation on the
encrypted inputs within the SMC framework. This
computation could involve arithmetic operations (e.g.,
addition, multiplication) or more complex functions.

Result Decryption:
 After the computation is completed, the parties jointly
decrypt the result using a secure protocol. Since AES is
symmetric, all parties must agree on the decryption key to
decrypt the result.
 AES-based Homomorphic Encryption within the SMC
framework allows multiple parties to compute a function on
their private inputs while preserving the confidentiality of
those inputs, thereby enabling secure computation on
encrypted data.

Applications :
 -Secure Auctions: SMC can facilitate secure auctions
where bidders can submit their bids without revealing them
to other participants until the end of the auction price.
 This prevents bid manipulation and collusion.
 -Privacy-preserving data analytics: SMC allows multiple
parties to jointly analyze sensitive data without revealing
their individual inputs.This is useful in situations such as
healthcare research, financial analysis, and market research.
 -Voting system: SMC can be applied to design a secure
electronic voting system where voters can vote anonymously
and maintain the integrity of the election process without
revealing the votes of each individual.
Challenges : Secure Multiparty Computation (SMC) faces
challenges in efficiency, scalability, communication
overhead, trust assumptions, and key management.
Efficiency concerns arise due to the computational intensity
of SMC protocols, while scalability issues emerge with the
growing number of parties involved. Communication
overhead is a challenge due to multiple rounds of
communication; trust assumptions require careful
consideration in adversarial environments, and key
management presents difficulties in distribution, revocation,
and storage. Addressing these challenges is crucial for
practical deployment of SMC in secure and privacy-
preserving computation.

15

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

B. Hybrid Cryptosystems:
Hybrid cryptosystems in an AES-based homomorphic
encryption context involve combining the features of
symmetric and asymmetric encryption schemes within a
homomorphic encryption framework. This approach
leverages AES for efficient symmetric encryption of data and
incorporates asymmetric encryption for secure key exchange
and other cryptographic functionalities. Here's how hybrid
cryptosystems can be applied in an AES-based homomorphic
encryption setting:
Overview:
 Hybrid Cryptosystems: Hybrid cryptosystems combine the
efficiency of symmetric encryption with the security benefits
of asymmetric encryption, offering a balanced approach to
encryption.

Working Principle:
Symmetric Encryption (AES):
 The data owner encrypts their data using AES symmetric
encryption, generating ciphertexts that are efficiently
processed.
 Asymmetric Encryption:
 The data owner encrypts the symmetric encryption key
(DEK) used in AES with the public key of the intended
recipient, ensuring secure key exchange.
 Alternatively, asymmetric encryption can be used for other
cryptographic functionalities such as digital signatures or
secure communication.
 Homomorphic Operations:
 The encrypted data and keys can be processed within a
homomorphic encryption framework,allowing computations
to be performed on the ciphertexts without decryption.
 Homomorphic operations such as addition and
multiplication can be applied to the ciphertexts, enabling
privacy-preserving data analysis and secure collaborative
computation.
 Decryption:
 The recipient decrypts the symmetric encryption key using
their private key, allowing them to
decrypt the data encrypted with AES and perform further
computations or analysis.
Applications :
 -Secure Communication: Hybrid cryptosystems are widely
used to secure communication channels, such as SSL/TLS for
securing web traffic. Asymmetric encryption is used for key
exchange and authentication, while symmetric encryption is
used for bulk data transmission.
 - Data Storage: Hybrid cryptosystems are employed to
secure stored data in databases, file systems, and cloud
storage services. Asymmetric encryption can be used to
encrypt symmetric keys, which in turn encrypt the actual
data.
Challenges : Hybrid cryptographic systems face challenges
in key management, algorithm selection, performance

4 Efficient Homomorphic Proxy Re-Encryption for

Arithmetic Circuit Evaluation" by Zhoujun Li, Wenjing

overhead, integration complexity, and security
risks.Effectively addressing these challenges is critical to
ensuring the robustness and effectiveness of hybrid
cryptographic systems in securing communication channels,
data storage, and digital signatures, along with other
applications.

C. Proxy Re-Encryption:
Proxy Re-Encryption (PRE) is a [4] cryptographic technique
that allows a semi-trusted proxy to transform ciphertexts
encrypted under one key into ciphertexts that can be
decrypted under another key, without the need to decrypt and
re-encrypt the data. While AES itself doesn't directly support
PRE, it can be used within a PRE framework to provide
encryption and decryption capabilities.
Here's how PRE can be applied in an AES-based
homomorphic encryption setting:
Overview:
 Proxy Re-Encryption (PRE): PRE enables a proxy entity to
transform ciphertexts from one encryption key to another,
facilitating secure data sharing and delegation of access
rights. AES-based Homomorphic Encryption: AES is a
symmetric encryption algorithm that can be used for data
encryption and decryption within a PRE framework.
Working Principle:
 Initial Encryption: The data owner encrypts their data using
AES encryption with their own secret key, generating
ciphertexts that only they can decrypt.
 Proxy Re-Encryption: The data owner delegates access
rights to specific recipients by providing them with re
encryption keys. The proxy entity, armed with the re-
encryption keys, transforms the ciphertexts encrypted under
the data owner's key into ciphertexts that can be decrypted by
the recipients' keys using a proxy re-encryption algorithm.
Decryption: The recipients decrypt the transformed
ciphertexts using their own secret keys, obtaining the original
plaintext data.
Applications :
 -Content Distribution: PRE can be used for secure content
distribution, allowing content providers to encrypt data once
and delegate re-encryption to proxies for distribution to
different users or devices, without compromising data
confidentiality.
 -Secure Messaging: PRE can enhance the privacy and
security of messaging applications by allowing messages to
be encrypted once by the sender and re-encrypted for
different recipients by proxies, ensuring end-to-end
encryption without the need for the sender to manage
multiple keys.
Challenges : Proxy re-encryption (PRE) faces challenges in
key management, proxy reliability, performance overhead,
scalability, and privacy issues.Effective key management,
reliable proxy assurance, performance optimization,
scalability solutions, and privacy protection mechanisms are

Lou, and Y. Thomas Hou. (Reference:
https://ieeexplore.ieee.org/document/6562705

16

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

essential to successfully deploying PRE to enable access
control and share data securely.

D. Homomorphic Properties of AES-Like
Ciphers:

Homomorphic properties of AES-like ciphers in AES-based
homomorphic encryption refer to the ability of these ciphers
to preserve certain algebraic operations on encrypted data,
allowing computations to be performed on ciphertexts
directly without decryption. While AES itself lacks inherent
homomorphic properties, researchers have explored the
development of AES-like ciphers with homomorphic
capabilities within a homomorphic encryption framework.
Here's a brief overview:
Overview:
 AES-Like Ciphers: These are encryption algorithms
designed to mimic the structure and security properties of
AES while incorporating homomorphic properties.
Homomorphic Encryption Framework: AES-like ciphers
with homomorphic properties operate within a homomorphic
encryption framework, enabling computations on encrypted
data without decryption. Homomorphic Operations:
Homomorphic encryption schemes support operations such
as addition and multiplication on encrypted data, allowing
mathematical computations to be performed on ciphertexts.
Homomorphic Properties:
1. Additive Homomorphism: AES-like ciphers with additive
homomorphic properties preserve addition operations on
ciphertexts. When two ciphertexts encrypted under the same
key are added together, the result decrypts to the sum of the
corresponding plaintexts.
2. Multiplicative Homomorphism: Some AES-like ciphers
exhibit multiplicative homomorphic properties, preserving
multiplication operations on ciphertexts. When two
ciphertexts encrypted under the same key are multiplied
together, the result decrypts to the product of the
corresponding plaintexts.
 Key Components:
1. AES Encryption: Utilize the AES algorithm for encrypting
data or intermediate values within the homomorphic
encryption scheme. AES provides efficient and secure
encryption of data blocks.
2. Homomorphic Encryption Scheme: Incorporate a
homomorphic encryption scheme that supports the desired
homomorphic operations, such as addition and
multiplication, on the encrypted data. 3. Key Management:
Implement secure key management practices to ensure the
confidentiality and integrity of encryption keys used in both
AES and the homomorphic encryption scheme.
Applications :
 -Secure Outsourcing: Organizations can outsource
computational tasks to untrusted servers while safeguarding
data privacy using homomorphic AES-like ciphers. This
allows for secure cloud computing and data processing
without exposing sensitive information.
 -Secure Messaging: Homomorphic properties of AES-like
ciphers empower secure messaging applications to perform

operations on encrypted messages without decryption. This
enhances privacy and confidentiality in communication
channels.
 -Privacy-Preserving Machine Learning: Homomorphic
AES-like ciphers enable secure computation on encrypted
machine learning models and data. Multiple parties can
collaborate on machine learning tasks while preserving the
privacy of their sensitive information.
Challenges : Developing homomorphic properties in AES-
like ciphers presents challenges in security assurance,
computational efficiency, key management, and algorithmic
complexity. Balancing security with computational overhead,
securely managing cryptographic keys, and validating
complex algorithms are essential for realizing the potential of
homomorphic AES-like ciphers in enabling secure and
privacy-preserving computation.

VI. REAL-WORLD APPLICATIONS AND USE CASES
Homomorphic encryption schemes using AES can be applied
in various real-world scenarios across different domains.
Here are some examples:

Secure Outsourcing of Data Processing: Homomorphic
encryption allows computations to be performed on
encrypted data without decrypting it first. This is particularly
useful in scenarios where sensitive data needs to be processed
by untrusted third parties, such as cloud service providers.
For instance, a company could outsource data analytics tasks
to a cloud provider while keeping the data encrypted. The
cloud provider can perform computations on the encrypted
data using homomorphic encryption, preserving data privacy.

Healthcare Data Analysis: In healthcare, patient data is highly
sensitive and subject to strict privacy regulations.
Homomorphic encryption can enable secure data analysis on
encrypted medical records. For example, hospitals could
collaborate with research institutions to perform statistical
analysis on encrypted patient data without compromising
patient privacy.

Financial Data Analysis: Financial institutions deal with large
volumes of sensitive financial data that need to be analyzed
for various purposes such as risk assessment, fraud detection,
and customer profiling. Homomorphic encryption can be
used to securely analyze this data while keeping it encrypted,
thus ensuring confidentiality and compliance with
regulations like GDPR or PCI-DSS.

Secure Multi-Party Computation (SMPC): Homomorphic
encryption can facilitate secure multi-party computation
where multiple parties wish to jointly compute a function
over their inputs while keeping those inputs private. For
example, in a scenario where several organizations want to
calculate aggregate statistics from their individual datasets
without revealing the raw data, homomorphic encryption
enables this computation to be performed securely.

17

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

Privacy-Preserving Machine Learning: Homomorphic
encryption can also be used to train machine learning models
on encrypted data while preserving data privacy. This is
particularly relevant in situations where data owners are
concerned about sharing their sensitive data with third
parties. With homomorphic encryption, data can remain
encrypted throughout the training process, and only the
encrypted model parameters are shared or used for prediction.

Secure IoT Data Processing: With the proliferation of Internet
of Things (IoT) devices, there's a growing need to process
sensitive data collected from these devices while preserving
privacy. Homomorphic encryption can enable secure and
privacy-preserving data processing in IoT environments,
allowing for analysis and decision-making without exposing
raw sensor data to unauthorized parties.

Blockchain and Cryptocurrency: Homomorphic encryption
can enhance the privacy and confidentiality of transactions in
blockchain networks. By encrypting transaction data
homomorphically, participants can perform certain
operations on the encrypted data within smart contracts while
keeping the underlying transaction details
confidential.[1][2][3][4][5].

VII. THE CHALLENGES AND FUTURE DIRECTIONS
Homomorphic encryption, especially when based on AES
(Advanced Encryption Standard)5, holds great promise for
secure computation over encrypted data. However, several
challenges and opportunities for future research and
development remain in this field, however, several challenges
and opportunities for future research and development
persist.6

1. Performance Optimization: The primary challenge with
AES-based homomorphic encryption is the computational
overhead. AES is a symmetric encryption algorithm, and
performing homomorphic operations on encrypted data often
involves complex mathematical operations, which can lead to
significant computational costs. Future research should focus
on improving the performance of AES-based homomorphic
encryption schemes, in order to make them more practical for
real-world applications.

2. Security Analysis7: Although AES is a widely utilized
encryption standard that is renowned for its security, its

5 Garrison, G., Wakefield, R. L., & Kim, S. (2015). The
effects of IT capabilities and delivery model on cloud

computing success and firm performance for cloud
supported processes and operations. International Journal of

Information Management, 35, 377-393.
6 Zhang, D., Feng, G., Shi, Y., & Srinivasan, D. (2021).

Physical Safety and Cyber Security Analysis of Multi-Agent
Systems: A Survey of Recent Advances. IEEE/CAA Journal

of Automatica Sinica, 8, 319-333.

implementation in a homomorphic encryption context
introduces additional security considerations. In the future, it
is imperative to conduct comprehensive security analyses of
homomorphic encryption schemes based on AES in order to
guarantee that they offer the necessary levels of
confidentiality, integrity, and authenticity.

3. Scalability: As the volume of data increases, scalability
emerges as a crucial concern in homomorphic encryption.
Future research should examine methods to enhance the
scalability of AES-based homomorphic encryption schemes,
thereby enabling efficient computation over vast datasets
without compromising security or performance.

4. Homomorphic Operations Support: AES-based
homomorphic encryption schemes typically offer a restricted
range of homomorphic operations, such as addition and
multiplication. Future research should aim to broaden the
range of supported operations to facilitate more intricate
computations on encrypted data, thereby enhancing the utility
of homomorphic encryption in diverse domains.

5. Key Management8: An efficient key management system
is essential for the secure deployment of AES-based
homomorphic encryption schemes. Future research should be
focused on developing robust key management mechanisms
that can handle the complexities of homomorphic encryption
while ensuring the confidentiality and integrity of encryption
keys.[3][6]

6. Standardization and Interoperability: The
establishment of standards for AES-based homomorphic
encryption can facilitate interoperability and encourage
adoption across diverse platforms and applications. Future
research should prioritize standardization initiatives to
guarantee compatibility and ease of integration with existing
systems and protocols.

7. Hardware Acceleration: The utilization of specialized
hardware, such as secure enclaves or hardware accelerators,
can significantly enhance the performance of AES-based
homomorphic encryption schemes. Future research should
explore hardware-based approaches to accelerate
homomorphic computations while still maintaining security
guarantees.

7 Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C.,
Schofnegger, M., & Walch, R. (2023). Pasta: A Case for

Hybrid Homomorphic Encryption. IACR Cryptology ePrint
Archive, 2023, 30-73

8 P, A., Sharma, A., Singla, A., Sharma, N., & V, D. G.
(2022). IoT Group Key Management using Incremental
Gaussian Mixture Model. In International Conference
Electronic Systems, Signal Processing and Computing

Technologies [ICESC-] (pp. 469-474).

18

https://www.ijoa.ma/

IJOA ©2024

International Journal on Optimization and Applications

IJOA. Vol. 4, Issue No. 3, Year 2024, www.ijoa.ma

Copyright © 2024 by International Journal on Optimization and Applications

8. Privacy-Preserving Machine Learning: Homomorphic
encryption has the potential to allow privacy-preserving
machine learning by allowing computations on encrypted
data. Future research should focus on developing AES-based
homomorphic encryption schemes for machine learning
applications, which would enable secure and privacy-
preserving model training and inference.[8]

9. Usability and Accessibility: The implementation and
utilization of AES-based homomorphic encryption is
imperative for its widespread adoption. Future research
should prioritize usability and accessibility by developing
user-friendly tools, libraries, and frameworks that will make
it easier for developers to integrate homomorphic encryption
into their applications.

10. Real-World Applications: Ultimately, it is imperative
to validate the practicality and efficacy of AES-based
homomorphic encryption in real-world applications in order
to facilitate its adoption. Research should focus on
demonstrating the feasibility and performance of
homomorphic encryption in various use cases, such as secure
outsourcing of computations, privacy-preserving data
analytics, and secure multiparty computation.

Exploring these future directions will contribute to the
advancement of AES-based homomorphic encryption and
pave the way for its widespread adoption in securing sensitive
data while enabling secure computation over encrypted
information. Addressing these challenges and advancing
AES-based homomorphic encryption techniques will be
crucial for broader adoption and seamless integration into
real-world scenarios.

VIII. CONCLUSION

In conclusion, this article explored the potential of
Homomorphic Encryption using the established Advanced
Encryption Standard (AES) algorithm. We delved into the

fundamentals of this approach, examining various techniques
for performing computations on encrypted data with AES. By
showcasing real-world applications and use cases, we've
highlighted the transformative potential of this technology in
areas like cloud computing and secure data analysis.
However, challenges remain, such as computational
overhead and limited operation support. As research
progresses, overcoming these hurdles will unlock the full
potential of AES-based Homomorphic Encryption, paving
the way for a future where data security and usability coexist
seamlessly.

REFERENCES
[1] Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D.
Dissertation, Stanford University. . (n.d.).
[2] Chen, B., Wang, Y., Zhang, Y., & Yang, J. (2014). Efficient privacy-
preserving biometric identification based on homomorphic encryption. In
Information Security and Cryptology - ICISC 2014 (pp. 98-112). Springer,
Cham. . (n.d.).
[3] Dijk, M. Van, Gentry, C., Halevi, S., Vaikuntanathan, V. (2010). Fully
homomorphic encryption over the integers. In Advances in Cryptology –
EUROCRYPT 2010 (pp. 24-43). Springer Berlin Heidelberg. (n.d.).
[4] Smart, N. P. (2013). Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Advances in Cryptology – EUROCRYPT 2013
(pp. 340-357). Springer Berlin Heidelberg. (n.d.).
[5] Juels, A., & Ristenpart, T. (2014). Honey encryption: Security beyond
the brute-force bound. In Advances in Cryptology – EUROCRYPT 2014
(pp. 293-310). Springer Berlin Heidelberg. (n.d.).
[6] Bogetoft, P., Christensen, D., Damgård, I., & Geisler, M. (2012). Secure
multiparty computation goes live. In Advances in Cryptology –
EUROCRYPT 2012 (pp. 325-342). Springer Berlin Heidelberg. (n.d.).
[7] Henecka, W., & Pohl, H. (2010). Privacy-preserving data analysis on
grids. In Proceedings of the 2010 ACM workshop on Cloud computing
security workshop (pp. 19-30). (n.d.).
[8] Bost, R., Popa, R. A., Tu, S., Goldwasser, S., & Boneh, D. (2015).
Machine learning classification over encrypted data. In 2015 IEEE
Symposium on Security and Privacy (pp. 1-17). IEEE. (n.d.).
[9] Goldwasser, S., & Rothblum, G. N. (2008). How to compute on
encrypted data. In Advances in Cryptology – CRYPTO 2008 (pp. 276-293).
Springer Berlin Heidelberg. . (n.d.).

19

https://www.ijoa.ma/

