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Abstract—In this paper, we propose a stochastic volatility
jump-diffusion model with a constant elasticity of variance β
in the variance equation. This model describes dynamics of
the asset price St and its variance Vt, based on two stochastic
differential equations (SDEs) with Poisson jumps. The resolution
of these two SDEs, is essential to find the sought European
option price which depends on both main two variables St
and Vt through a partial integro-differential equation (PIDE).
The existence and uniqueness of solution of this PIDE in a
weighted Sobolev space, are established based on a variational
formulation of the considered problem which we solve using
the finite element method (FEM). Spatial differential operators
are discretized using P1 elements, while the time stepping is
performed using an explicit Euler scheme. Finally, we provide
some numerical results based on the FEM to show the effect of
different values of β on the option prices.

Index Terms—Jump-diffusion model, Option pricing, Partial
integro-differential equation, Finite elements method

I. INTRODUCTION

In finance literature, it is common to represent the un-
certainty of the economy by a filtered probability space
(Ω,F , (Ft)t≥0,P) where Ft is the filtration of available
information at time t, and P is the real probability measure.
All processes that we shall consider in this section will be
defined in this space. An asset price model with stochastic
volatility, in which stochastic volatility follows the CEV model
has been defined in [3] as follows{

dSt = µStdt+ StVtdWt

dVt = pdt+ ηV βt dW
′

t

(1)

where µSt is the drift term, Vt is the volatility, ηV βt is the
volatility term, while p, η and β are non-negative constants.
Wt and W

′

t are defined as two Brownian motions with
〈Wt,W

′

t 〉 = ρ (i.e. ρ is the correlation factor).

The numerical resolution of such problems, has been
provided in [1] using the finite element method when there
is no jump and also, where the authors have considered the
jump-diffusion model (Bates’s model [4]) with a stochastic
volatility which follows the Heston’s model [19] for options
pricing. On the other hand, Eraker and Polson in [13],

extended Bate’s work in 2003, by incorporating jumps in the
volatility equation also. Their model is given by{

dSt = µStdt+ St
√
VtdWt + St−YtdN

s
t

dVt = pdt+ η
√
VtdW

′

t + ZtdN
V
t

(2)

where Ns
t and NV

t are independent Poisson processes.

Broadie and Kaya [6] have performed exact method for
Eraker’s et al model for the evaluation of an European call
under the stock index S&P500 by the Monte-Carlo method.
In this paper, we would like to generalize the volatility term
of the volatility in (2). In fact, we consider V βt instead of√
Vt in the volatility equation, and we propose the finite

element method for comparing the obtained results in [6] and
improving the convergence of the RMS error in dimension 2.

The rest of this paper is organized as follows: In section 2.,
we present the constant elasticity of variance with jumps
(CEVJ) model for option pricing problem. In section 3.,
we introduce a weighted Sobolev space and the variational
formulation for the considered problem. In section 4., we
provide and compare the obtained numerical results by the
two methods mentioned before, namely, the execution time
and the RMS error for different values of β. Finally, we
conclude our work in section 5.

II. MODEL DESCRIPTIONS

First, we assume there is a risk-neutral probability measure
Q, for more details, refer to [26] and references therein. We
consider an European derivative on St, denoted by w(t, St, Vt)
with expiration date T and payoff function h, and by r; the
interest rate. Its price at a time t, will depend on time t, on
the price of the underlying asset St, and on the volatility Vt.
It is given by the risk-neutral expected discounted payoff

w(t, s, v) = EQ
[
e−r(T−t)h(ST )/St = s, Vt = v

]
, (3)

In the risk-neutral world, the considered model are governed
by the following dynamics:{

dSt = (r − λsm)Stdt+ St
√
VtdWt + St−YtdN

s
t

dVt = (p−R(t, s, v)ηV βt )dt+ ηV βt dW
′
t + ZtdN

V
t

(4)
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where St, Vt, p, η and β are defined above in (2). Moreover,
r is the risk-free interest rate, Ns

t and Nv
t are independent

Poisson processes with constant intensities λs and λv respec-
tively. Yt is the jump size of the asset price return with density
φY (y) and E(Yt) := m < ∞, while Zt is the jump size of
the volatility with density φZ(z).
In addition, we have

R(t, s, v) = ρ
µ− r
vt

+
√

1− ρ2 θ∗(t, s, v),

where ρ is the correlation factor and θ∗(t, s, v) is an arbitrary
function, for more details, see page 45 in [14]. We note that
Ns
t and Nv

t are independent of standard Brownian motions
Wt and W

′
.

Since every compound Poisson process can be represented as
an integral form of a Poisson random measure (see page 82
”section 3.2” in [7], and equation (3.8) ”section 3.3” in [7]),
we have ∫ t

0

Z∗sdNs = Mt =

∫ t

0

∫
R
zN(ds, dz)

where N(dt, dz) is a Poisson random measure of the process

Mt =

Nt∑
i=1

Z∗i with intensity measure λφ(dz)dt.

Then, the dynamics on the right hand side of (4) can
be rewritten as follows

dSt = (r − λsm)Stdt+ St
√
VtdWt +

∫
R
St−yN

s(dt, dy)

dVt = (p−R(t, s, v)ηV βt )dt+ ηV βt dW
′
t +

∫
R
zNv(dt, dz)

(5)

Ns is a Poisson random measure of the process
Nt∑
i=1

Yi

with intensity measure νs(dy)dt = λsφY (y)dt, and Nv is a

Poisson random measure of the process
Nt∑
j=1

Zj with intensity

measure νv(dz)dt = λvφZ(z)dt.
In the following, we present a theoretical formulation of
the considered problem (5), and we provide a proof of the
existence and uniqueness of solution in this general case.

A. General formulation
Let us consider a financial asset whose price {St, t ≥ 0} is

given by the following jump-diffusion stochastic differential
equation (see page 10 in [8]):

dSt = F (t, St, Vt)dt+G(t, St, Vt)dWt+

∫
Rn
γ(t, S(t−), z)ÑS(dt, dz),

(6)
where S0 = s0 ∈ Rn, F : [0, T ] × Rn × Rd −→ Rn, is

a drift term, Wt is a m-dimensional Brownian motion, and
G : [0, T ]×Rn×Rd −→Mn×m(R), is the stochastic volatility.
Vt is given by the following stochastic differential equation:

dVt = a(t, St, Vt)dt+b(t, St, Vt)dW
′
t+

∫
Rd
χ(t, V (t−), ς)ÑV (dt, dς),

(7)
with V0 = v0 ∈ Rd. The simplest models (see [9]) take a

constant volatility, but these models are generally not smooth

enough to match real price. The operator a : [0, T ] × Rn ×
Rd −→ Rd, is a drift term of volatility, b : [0, T ]×Rn×Rd −→
Md×m(R), is the volatility of volatility, and W

′

t is a linear
combination of Wt and an independent Brownian motion Bt
defined by : Wt = ρW

′

t +
√

1− ρ2Bt, where the correlation
ρ is some constant in [−1, 1].

ÑS(dt, dz) = (ÑS
1 (dt, dz), ...., ÑS

lS
(dt, dz))

=
(
NS

1 (dt, dz1)− νS1 (dz1)dt, ..., N
S
lS
(dt, dzlS )− νSlS (dzlS )dt

)
ÑV (dt, dς) = (ÑV

1 (dt, dς), ...., ÑV
lV

(dt, dς))

=
(
NV

1 (dt, dς1)− νV1 (dς1)dt, ..., N
V
lV

(dt, dςlV )− νVlV (dςlV )dt
)
,

are respectively lS , lV independent compensated Poisson
random measures, independents of W (). For each k ∈
{1, 2, ..., lS} and k′ ∈ {1, 2, ..., lV } we have: ÑS

k (dt, dz) =

NS
k (dt, dz) − νSk (dz)dt and ÑV

k′ (dt, dς) = NS
k′(dt, dς) −

νVk′(dς)dt, where νSk , νVk′ are the Lévy measures (intensity
measures) of the Poisson random measures NS

k (., .) and
NV
k′ (., .) respectively, see (Theorem 1.7, page 3 in [8], Ap-

pendix). We mention that {NS
k } and {NV

k′} are independent
Poisson random measures with Lévy measures νS , νV respec-
tively, for all k ∈ {1, 2, ..., lS} and k′ ∈ {1, 2, ..., lV }.
Moreover, we assume that the jump processes ÑS and ÑV

are independent of standard Brownian motions Wt and W
′

t .
γ : [0, T ] × Rn × Rn −→ Mn×lS (R), (t, s, z)

γ7−→ γ(t, s, z),
and χ : [0, T ] × Rd × Rd −→ Md×lV (R), (t, v, ς)

χ7−→
χ(t, v, ς), are respectively n × lS and d × lV matrix of
measurable real valued functions which are adapted processes
such that the integrals exist. For a detailed presentation of
jump-diffusion model, we refer to [8].

γ =


γ11 γ12 · · · γ1lS
γ21 γ22 · · · γ2lS

...
...

. . .
...

γn1 γn2 · · · γnlS

 ,

χ =


χ11 χ12 · · · χ1lV

χ21 χ22 · · · χ2lV
...

...
. . .

...
χd1 χd2 · · · χdlV

 .

γ(k) := (γ1k, γ2k, ...., γnk), χ(k′) := (χ1k′ , χ2k′ , ...., χdk′) for
k ∈ {1, 2, ..., lS} and k′ ∈ {1, 2, ..., lV }.
Note that each column γ(k), χ(k′) respectively of the n × lS
and d× lV matrix γ = [γij ], depends on z and ς only through
the kth, k′th coordinate zk, ςk′ , i.e γ(k)(t, s, z) = γ(k)(t, s, zk).
χ(k′)(t, v, ς) = χ(k′)(t, v, ςk′) , z ∈ RlS , ς ∈ RlV .
If the following assumptions are satisfied:
• The functions F,G, a, b, γ, χ, are measurable.

For every t ∈ [0, T ], s, s′ ∈ Rn, and v, v′ ∈ Rd, and there
exists two constants K1,K2 such that,
• ‖F (t, s, v) − F (t, s′, v′)‖ + ‖G(t, s, v) − G(t, s′, v′)‖ +∫

Rn
‖γ(t, s, z)− γ(t, s′, z)‖ÑS(dt, dz) ≤ K1(‖s− s′‖+

‖v − v′‖)
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• ‖F (t, s, v)‖2 + ‖G(t, s, v)‖2 +∫
Rn
‖γ(t, s, z)‖2ÑS(dt, dz) ≤ K2

1 (1 + ‖s‖2)

• ‖a(t, s, v) − a(t, s′, v′)‖ + ‖b(t, s, v) − b(t, s′, v′)‖ +∫
Rn
‖χ(t, v, ς)−χ(t, v′, ς)‖ÑV (dt, dς) ≤ K2(‖s−s′‖+

‖v − v′‖)
• ‖a(t, s, v)‖2 + ‖b(t, s, v)‖2 +∫

Rn
‖χ(t, v, ς)‖2ÑV (dt, dς) ≤ K2

2 (1 + ‖v‖2)

• S0, V0 are square-integrable.

Then, the solution of the system (6)-(7) is unique, for more
details see ( [10], [11], [12]).
We note that in our special case, we have here
F (t, St, Vt) = r − λsm,
G(t, St, Vt) = St

√
Vt, a(t, St, Vt) = p − R(t, s, v)ηV βt and

b(t, St, Vt) = ηV βt .

In the following, we formulate the variational problem
associated to (5).

III. VARIATIONAL PROBLEM

In weighted Sobolev spaces, Bensoussan and Lions [5],
considered that the value of the function w defined in (3),
can be characterized as the solution of the following PIDE.


∂w

∂t
(t, s, v)− Lw(t, s, v) = 0 ∀ t ∈ [0, T ], s ∈ R, v ∈ R+

w(T, s, v) = h(s) s ∈ R, v ∈ R+

(8)
with

Lw =
1

2
v2s2

∂2w

∂s2
+ ρηvβ+1s

∂2w

∂s∂v
+

1

2
η2

2β ∂2w

∂v2

+(r − λsm)s
∂w

∂s
+ (p−R(t, s, v)ηvβ)

∂w

∂v
−

(r − λsm)w +

∫
R

[
u(s+ sy, v)− u(s)− syu′s(s, v)

]
νs(dz)

+

∫
R

[
u(s, v + z)− u(s)− zu′v(s, v)

]
νv(dz)

(9)
Then, we use the variational formulation in order to solve
the partial integro-differential equation (PIDE) by the finite
element method (FEM).
For this, let be U = [0,+∞[×]a, b[ with 0 < a < b < +∞
is a domain in R2. Let δ = (s, v) be a vector in U , with the
Euclidean norm defined by the formula |δ| =

√
s2 + v2.

We introduce some weighted Sobolev spaces, L2
α(U) is a space

of measurable functions u and 2th integrable for the measure
e−α|δ|dδ on U where α > 0 and dδ = dsdv. The variational
formulation of (8) consists of finding a continuous function u
defined on the time interval [0, T ] with value in the following
weighted Sobolev space (see [1])
W1,2
α,1([0.T ] × U) ≡ W1,2

α,1 the space of functions u in

L2
(

0, T ; W1,2
α (U)

)
such that

∂u

∂t
∈ L2

(
0, T ; L2

α(U)
)

.
W1,2
α (U) is the space of functions u in L2

α(U) such that

∂u

∂xi
∈ L2

α(U), equipped with the norm

‖u‖
W

1,2
α (U)

:= ‖u‖α =

(∫
U

|u|2e−α|δ|dδ +
∫
U

2∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣2e−α|δ|dδ)1/2

.

(10)
Multiplying the PIDE in (8) with a test function u′ ∈
D(U), we obtain the associated variational formulation, with
u(t, s, v) = w(T − t, s, v):{ (∂u

∂t
, u′
)

+
(
Lu, u′

)
= 0 ∀ t ∈ [0, T ] and (s, v) ∈ U

(u(0, ., .), u′) = (h, u′) ∀ (s, v) ∈ U
(11)

using the Green’s formula and the Dirichlet boundary condi-
tions, we get:{ (∂u

∂t
, u′
)
− a(u, u′) = 0 ∀ t ∈ [0, T ] and (s, v) ∈ U(

u(0, ., .), u′
)

=
(
h, u′

)
∀ (s, v) ∈ U

(12)
with

a(u, u′) =
1

2

∫
U

v2s2
∂u

∂s

∂u′

∂s
e−α|δ|dδ +

∫
U

v2s
∂u

∂s
u′e−α|δ|dδ

−
∫
U

(r − λsm)s
∂u

∂s
u′e−α|δ|dδ +

∫
U

η2

2
v2β

∂u

∂v

∂u′

∂v
e−α|δ|dδ

+

∫
U

βη2v2β−1 ∂u

∂v
u′e−α|δ|dδ −

∫
U

(p− ηvβR)∂u
∂v
u′e−α|δ|dδ

+

∫
U

ρηvβ+1s
∂u

∂v

∂u′

∂s
e−α|δ|dδ +

∫
U

ρηvβ+1 ∂u

∂v
u′e−α|δ|dδ

+

∫
U

(r − λsm)uu′e−α|δ|dδ −
∫
U

αs3v2

2|δ|
∂u

∂s
u′e−α|δ|dδ (13)

−
∫
U

ραη
svβ+1

|δ|
∂u

∂s
u′e−α|δ|dδ −

∫
U

αη2v2β+1

2|δ|
∂u

∂v
u′e−α|δ|dδ

−
∫
U

(∫
R

[
u(s+ sy, v)− u(s)− sy u

∂s

]
νs(dy)

)
u′e−α|δ|dδ

−
∫
U

(∫
R

[
u(s, v + z)− u(v)− z u

∂v

]
νv(dz)

)
u′e−α|δ|dδ

where
(Lu, u′) = −a(u, u′)

For h ∈ W1,2
α ∩ L∞, the variational problem (12) admits

a unique solution in W1,2
α,1 ∩ L∞. This solution has the

probabilistic representation (3), for more details see ( [1], [2]).
In the next section, we present and discuss some numerical
results.

IV. NUMERICAL RESULTS

With the growing complexity of models and derivatives,
the numerical methods associated with assessing financial
options became an important field of research over the last
decade. In the present section, we will implement a European
call using the associated PIDE (12) to the CEVJ model (5) for
option pricing. We will present the results of the simulations
given by finite elements method using FreeFem++ software.
The numerical experiments were performed on a Sony Vaio
Laptop with an Intel® Pentium® CPU P6100@ 2.00 GHZ
processor and 4 Go of RAM, running Windows 7 (64 bits).
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We consider a European call for the S&P500 stock
index whose true value is equal to 6.8619 for this purpose.
The parameters used in our numerical experiments are
K = 100, p = 0.00346, ρ = −0.82, Rmoy = 3.14, η = 0.05,
r = 3.19%, T = 1 year.
Then, we will solve and compare the resolution approach
of variational problem for the pricing of the considered
European option by using the finite elements approximation
in space, and an explicit Euler discretization in time.
For the numerical simulation, we consider the problem (12)
on a bounded domain Ω = (Smin, Smax) × (vmin, vmax),
where (vmin, vmax) does not contain zero. The corresponding
variational problem is then given by{ (∂u

∂t
, u′
)
− a(u, u′) = 0, ∀ t ∈ [0, T ], (s, v) ∈ Ω(

u(0, ., .), u′
)

=
(
h, u′

)
∀ (s, v) ∈ Ω

(14)
where a(u, u′) is given by (13). The resolution of this problem
using FreeFem++ with P1 finite elements, provides the fol-
lowing numerical results as illustrated in Table I and Table II.

TABLE I
COMPUTING TIMES OF FEM IN SECOND UNIT, ASSOCIATED TO CEV

VALUES UTILIZED FOR EACH NUMBER OF TIME STEPS

No of Comput times (sec) Weight of Power of
time steps space α volatility β

10 2.0256 0.30217 2/5
20 12.7682 0.82002 1/3
40 18.8287 2.1362469 2/7
80 37.3328 2.2957453 1/4
160 58.1834 2.3424291 2/9

In Table I, we present different values of CEV, namely
β, associated to each number of time steps. This number of
iterations has been changed in a way to show the time when
it has been observed there is a reduction or minimization
of the difference between the values of estimated and true
option prices based on different statistical factors as it will be
discussed hereafter.

TABLE II
BIAS, MEAN SQUARED ERROR (MSE) AND THE VALUES OF THE OPTION

PRICE ASSOCIATED TO EACH CEV VALUE

Power of Bias MSE Estimated price True price
volatility β of option of option

2/5 0.5023 0.327447 7.3084
1/3 0.4451 0.001161 6.9512
2/7 0.2167 0.000196 7.0228 6.8061
1/4 0.1246 0.000004 6.9307
2/9 0.0835 0.0000002 6.8896

In Table II, we show the numerical values of the estimated
option price for different values of CEV. We can deduce from
this table that as more the value of CEV is small, as more the
value of the bias and the mean squared error (MSE) become
small, while the estimated option price becomes closer to the
true option price when β is chosen small.

V. CONCLUSION

The aim of this paper, is to show the effect of CEV
on the pricing of the European option under jump-diffusion
model with stochastic volatility. The study has been based on
the formulation of a variational problem resolved using the
finite elements method (FEM) for some values of β or more
precisely when it is strictly smaller than 1/2. We concluded
that the obtained values of the option price are closer to the
true market values of the European option exercised under the
stock index S&P500 on March 2, 2014.
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