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Abstract—We establish an approximation and compactness
results in inhomogeneous Musielak-Orlicz-Sobolev spaces, then
we shall give the proof of existence results for the entropy
solutions of the following nonlinear parabolic problem

∂u
∂t
− div

(
a(x, t, u,∇u)

)
− div(Φ(x, t, u))) = f in QT

u(x, 0) = u0(x) in Ω
u = 0 on ∂Ω× (0, T ).

Where QT = Ω × (0, T ) and the growth and the coercivity
conditions on the monotone vector field a are prescribed by a
generalized N -function M . We assume any restriction on M ,
therefore we work with Musielak-Orlicz spaces which are not nec-
essarily reflexive. The lower order term Φ :Ω×(0, T )×R→ RN is
a Carathéodory function, for a.e. (x, t) ∈ QT and for all s ∈ R,
satisfying only a growth condition and the right hand side f
belongs to L1(QT ).

Index Terms—Non-linear Parabolic problems; Musielak-Orlicz
spaces; Entropy Solutions; Non-coercive Problems; Lower order
term.

I. INTRODUCTION

In the last decade, there has been an increasing interest
in the study of various mathematical problems in modular
spaces. These problems have many consideration in applica-
tions (see [14], [38], [41]) and have resulted in a renewal
interest in Lebesgue and Sobolev spaces with variable ex-
ponent, Musielak, Orlicz space, the origins of which can
be traced back to the work of Orlicz in the 1930s. In the
1950s, this study was carried on by Nakano [34] who made
the first systematic study of spaces with variable exponent.
Later, Polish and Czechoslovak mathematicians investigated
the modular function spaces (see for example Musielak [32],
Kovacik and Rakosnik [26]). The study of variational problems
where the function a(.) satisfies the non-polynomial growth
conditions instead of having the usual p-structure arouses
much interest with the development of applications to electro-
rheological fluids as an important class of non-Newtonian
fluids (sometimes referred to as smart fluids). The electro-
rheological fluids are characterized by their ability to dras-
tically change the mechanical properties under the influence
of an external electromagnetic field. A mathematical model
of electro-rheological fluids was proposed by Rajagopal and
Ruzicka (we refer to [37], [38] for more details). Another
important application is related to image processing [39] where

this kind of the diffusion operator is used to underline the
borders of the distorted image and to eliminate the noise.

In point of mathematical physics view, it is hard task to
show the existence of classical solutions, i.e., solutions which
are continuously differentiable as many times as the order
of derivatives in equations under consideration. However, the
concept of weak solutions is not enough to give a formulation
to all problems and does not provide uniqueness and stability
properties. Hence, as a certain more general idea, we can
use the notion of entropy solution which we have to assume
in addition to the weak formulation of the problem certain
inequalities.

In this work, we deal with the existence result of the en-
tropy solutions for the following nonlinear parabolic problem
without assuming any restriction on the N -function M

∂u
∂t − div

(
a(x, t, u,∇u)

)
− div(Φ(x, t, u)) = f in QT

u(x, 0) = u0(x) in Ω
u = 0 on ∂Ω× (0, T ),

(1)

where the data f belongs to L1(QT ), Au =

−div
(
a(x, t, u,∇u)

)
is a Leray-Lions operator defined on

W 1,x
0 LM (QT ). The lower order term Φ :Ω×(0, T )×R→ RN

is a Carathéodory function, for a.e. (x, t) ∈ QT and for all
s ∈ R, satisfying only a growth condition and not necessarily
coercive.

The notion of renormalized solution has been introduced by
Lions and Di Perna [15] for the study of Boltzmann equation
(see also P.-L. Lions [29] for a few applications to fluid
mechanics models). This notion was then adapted to elliptic
version by Boccardo, J.-L. Diaz, D. Giachetti, F.Murat [13]
and F. Murat [31]. At the same the equivalent notion of entropy
solutions has been developed independently by Bénilan and
al. [11] for the study of nonlinear elliptic problems.

The study of the parabolic equations in Orlicz spaces have
been a topic for many years, starting from the work of
Donaldson [16] and with later results of Benkirane, Elmahi
and Meskine, (see [7], [17], [18]). All of them concern the
case of classical spaces, namely Orlicz spaces with an N -
function dependent only on x without the dependence on
(t, x). We prove our result without any restriction on the
growth of an N -function, in particular the ∆2-condition for
an N -function and its conjugate. This results in a need of
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formulating the approximation theorem and extensively using
the notion of modular convergence. The fundamental studies
in this direction are due to Gossez for the case of elliptic
equations [20], [21]. The appearance of (x, t)-dependence in
an N -function requires the studies on the uniform boundedness
of the convolution operator. Existence of entropy solution
with L1-data has been proved by Leone and Porretta in [28]
for the Dirichlet problem associated to the nonlinear elliptic
equation −div

(
a(x, u,∇u)

)
= f in the classical Sobolev

spaces W 1,p(Ω). In [36] the existence and uniqueness of
entropy solutions of the problem (1) has been studied by
Prignet where Φ = 0 and Au = −div

(
a(x, t, u,∇u)

)
is a

Leray-Lions operator in divergence form acting on W 1,p(Ω).
The existence of renormalized solutions of the problem (1) in
Orlicz spaces has been proved in [24].
As far as we know, there’s not much papers concerned with the
nonlinear parabolic equations with obstacle in Musielak-Orlicz
spaces with L1 data, in the context of renormalized solution we
refer to the work of Gwiazda, Wittbold and al. in [22] where
the existence proof related to a nonlinear parabolic problem
with L1-data in Musielak spaces requires a very technical
construction of multistage approximation of the solution. In
particular it is based on nonlinear semi-group theory of m-
accretive operators, but the authors assume that M satisfies
the ∆2-condition and the proof was based on the modular
Poincaré inequality, we refer also to [23] for the elliptic case
without ∆2-condition on M .

Other difficulties associated with the existence of entropy
solutions of the problem (1) lie in the fact that the term
div(Φ(x, t, u)) can not be managed by the divergence theorem
and the general Musielak function M does not have to satisfy
the suitable condition ∆2 which induces a loss of reflexivity
of our framework setting.

Our main goal of this paper is to prove the existence of an
entropy solution of the problem (1) in the sense of Definition
5.1. (see section IV) for a general N -function M .

II. PRELIMENARY

In this section we list briefly some definitions and facts
about Musielak-Orlicz-Sobolev spaces. A standard reference
is [32]. We also include the definition of inhomogeneous
Musielak-Orlicz-Sobolev spaces and some preliminaries lem-
mas to be used later on this paper.

Musielak-Orlicz spaces: Let Ω be a domain in Rd, d ∈ N.
Definition 2.1: Let M : Ω×R 7→ R be a function such that:

(i) For almost all (a. a.) x ∈ Ω, M(x, ·) is an N -
function, that is, convex and even in R, increasing in
R+, M(x, 0) = 0, M(x, s) > 0 for all s > 0,

lim
s→0

M(x, s)

s
= 0, lim

s→∞

M(x, s)

s
=∞.

(ii) For all s ∈ R, M(·, s) is a measurable function.
A function M(x, s) which satisfies the conditions (i) and

(ii) is called a Musielak-Orlicz function, a generalized N -
function or a generalized modular function.

From now on, M : Ω × R 7→ R will stand for a general
Musielak-Orlicz function. In some situations, the growth order
with respect to t of two given Musielak-Orlicz functions M
and P are comparable. This concept is detailed in the next
definition.

Definition 2.2: Let P : Ω × R 7→ R be another Musielak-
Orlicz function.
• Assume that there exist two constants ε > 0 and
s0 ≥ 0 such that for a. a. x ∈ Ω one has P (x, s) ≤
M(x, εs) for all s ≥ s0. Then we write P ≺M and we
say that M dominates P globally if s0 = 0 and near
infinity if s0 > 0.

• We say that P grows essentially less rapidly than M
at s = 0 (respectively, near infinity), and we write P �
M , if for every positive constant k0 we have

lim
t→0

sup
x∈Ω

P (x, k0s)

M(x, s)
= 0 (respectively, lim

t→∞
sup
x∈Ω

P (x, k0s)

M(x, s)
= 0).

We will also use the following notation: Mx(s) = M(x, s),
for a. a. x ∈ Ω and all s ∈ R, and we associate its inverse
function with respect to s ≥ 0, denoted by M−1

x , that is,

M−1
x (M(x, s)) = M(x,M−1

x (s)) = s, for all s ≥ 0.

Remark 2.3: It is easy to check that P � M near infinity
if and only if

lim
s→∞

M−1
x (k0s)

P−1
x (s)

= 0 uniformly for x ∈ Ω \ Ω0

for some null subset Ω0 ⊂ Ω.�
We introduce the functional %M,Ω given by

%M,Ω(u) =

∫
Ω

M(x, u(x)) dx,

for any Lebesgue measurable function u : Ω 7→ R. The set

LM (Ω) = {u : Ω 7→ R mesurable such that %M,Ω(u) <∞}

is called the Musielak-Orlicz class related to M in Ω or
simply the Musielak-Orlicz class.

The Musielak-Orlicz space LM (Ω) is the vector space
generated by LM (Ω), that is, LM (Ω) is the smallest linear
space containing the set LM (Ω). Equivalently,

LM (Ω) = {u : Ω 7→ R mesurable such that %M,Ω(u/α) <∞,

for some α > 0}.
For a Musielak-Orlicz function M , we introduce its com-

plementary function, denoted by M̄ , as

M̄(x, r) = sup
s≥0
{rs−M(x, s)},

that is M̄(x, r) is the complementary to M(x, s) in the sense
of Young with respect to the variable r. It turns out that M̄
is another Musielak-Orlicz function and the following Young-
Fenchel inequality holds

|sr| ≤M(x, s) + M̄(x, r) for all s, r ∈ R and a. a. x ∈ Ω.
(2)
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In the space LM (Ω) we define the following two norms:

‖u‖M,Ω = inf

{
λ > 0 /

∫
Ω

M(x, u(x)/λ) dx ≤ 1

}
,

which is called the Luxemburg norm, and the so-called
Orlicz norm, namely

‖u‖(M),Ω = sup
%M̄,Ω(v)≤1

∫
Ω

u(x)v(x) dx.

where the supremum is taken over all v ∈ LM̄(Ω) such that
%M̄,Ω(v) ≤ 1. An important inequality in LM (Ω) is the
following: ∫

Ω

M(x, u(x)) dx ≤ ‖u‖(M),Ω (3)

for all u ∈ LM (Ω) such that ‖u‖(M),Ω ≤ 1, where from we
readily deduce∫

Ω

M
(
x,

u(x)

‖u‖(M),Ω

)
dx ≤ 1 for all u ∈ LM (Ω) \ {0}. (4)

From the definition of the Orlicz norm and (2) it is easy to
obtain the inequality

‖u‖(M),Ω ≤ 1 +

∫
Ω

M(x, u(x)) dx, for all u ∈ LM (Ω). (5)

It can be shown that the norm ‖ · ‖(M),Ω is equivalent to
the Luxemburg norm ‖ · ‖M,Ω. Indeed,

‖u‖M,Ω ≤ ‖u‖(M),Ω ≤ 2‖u‖M,Ω for all u ∈ LM (Ω). (6)

Also, Hölder’s inequality holds∫
Ω

|u(x)v(x)|dx ≤ ‖u‖M,Ω‖v‖(M̄),Ω

for all u ∈ LM (Ω) and v ∈ LM̄ (Ω), Most properties verified
by the classical Orlicz spaces cannot be extended to the
Musielak-Orlicz spaces unless we assume certain supplemen-
tary hypotheses on the generalized N -function M . To this end,
we first introduce the two following assumptions.

%M,Ω(λχK) <∞ for any λ ≥ 0 and any compact set K ⊂ Ω̄.
(7)

{
There exist two positive constants λ0 and c0 such that

ess inf
Ω

M(x, λ0) ≥ c0.
(8)

In (7), χA stands for the characteristic function of a mea-
surable set A. The assumption (7) assures that any bounded
measurable function with compact support in Ω̄ is in the class
LM (Ω). In this situation, we may introduce the space EM (Ω)
as the closure in LM (Ω) of the bounded measurable functions
with compact support in Ω̄. The space EM (Ω) is then the
largest linear space such that EM (Ω) ⊂ LM (Ω), this inclusion
being in general strict. Notice that if Ω is bounded then (7)
implies the inclusion L∞(Ω) ⊂ LM (Ω).

On the other hand, the assumption (8) implies that any
function in LM (Ω) is locally integrable in Ω. This is stated in
the following result.

Lemma 2.4: Assume (8). Then the inclusion LM (Ω) ⊂
L1

loc(Ω) holds true. Moreover, if |Ω| def
= meas(Ω) < ∞, then

LM (Ω) ⊂ L1(Ω) with continuous inclusion, that is

‖u‖L1(Ω) ≤ C1‖u‖(M),Ω for all u ∈ LM (Ω),

where C1 = λ0(|Ω|+ 1/c0).
Proof 2.5: According to the convexity of M(x, ·) we obtain

sM(x, λ0) ≤ λ0M(x, s) for all s ≥ λ0 and a. a. x ∈ Ω.

Let u ∈ LM (Ω) and A ⊂ Ω a measurable set with |A| <∞.
Take α > 0 such that %M,Ω(u/α) <∞. Then,∫

A

∣∣∣u
α

∣∣∣=∫
A∩{|u|<αλ0}

∣∣∣u
α

∣∣∣+

∫
A∩{|u|≥αλ0}

∣∣∣u
α

∣∣∣
≤λ0|A|+

1

c0

∫
A∩{|u|≥αλ0}

∣∣∣u
α

∣∣∣M(x, λ0)

≤λ0|A|+ λ0

c0

∫
Ω
M
(
x, uα

)
<∞,

and thus u ∈ L1(A). If |Ω| < ∞, we may take A = Ω and
α = ‖u‖(M),Ω in the estimate above. Using (4) it yields∫

Ω

|u| ≤ λ0

(
|Ω|+ 1

c0

)
‖u‖(M),Ω.

From now on, we will assume both assumptions (7) and (8)
in this paper.

Strong convergence in LM (Ω) is rather strict. For most
purposes, a mild concept of convergence will be enough,
namely, that of modular convergence.

Definition 2.6: We say that a sequence (un) ⊂ LM (Ω) is
modular convergent to u ∈ LM (Ω) if there exists a constant
λ > 0 such that

lim
n→∞

%M,Ω((un − u)/λ) = 0.

Musielak-Orlicz-Sobolev spaces: According to Lemma 2.4,
any function in LM (Ω) is locally integrable and, in particular,
may be considered as a distribution. This allows us to intro-
duce the so-called Musielak-Orlicz-Sobolev spaces. For any
fixed nonnegative integer m we define

WmLM (Ω) = {u ∈ LM (Ω) /Dαu ∈ LM (Ω) for all α, |α| ≤ m}

where α = (α1, α2, ..., αd) ∈ Z, αj ≥ 0, j = 1, . . . , d, with
|α| = α1 + α2 + ... + αd and Dαu denote the distributional
derivative of multiindex α. The space WmLM (Ω) is called
the Musielak-Orlicz-Sobolev space (of order m).

Let u ∈ WmLM (Ω), we define %
(m)
M,Ω(u) =∑

|α|≤m %M,Ω(Dαu), and

‖u‖(m)
M,Ω = inf{λ > 0 / %

(m)
M,Ω(u/λ) ≤ 1},

‖u‖m,M,Ω =
∑
|α|≤m

‖Dαu‖M,Ω.
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The functional %(m)
M,Ω is convex in WmLM (Ω), whereas the

functionals ‖ · ‖(m)
M,Ω and ‖ · ‖m,M,Ω are equivalent norms on

WmLM (Ω). The pair (WmLM (Ω), ‖ · ‖(m)
M,Ω) is a Banach

space under the assumption (8).
The space WmLM (Ω) is identified to a subspace of

the product Π|α|≤mLM (Ω) = ΠLM , this subspace is
σ(ΠLM ,ΠEM̄ ) closed.

Let Wm
0 LM (Ω) be the σ(ΠLM ,ΠEM̄ ) closure of D(Ω)

in WmLM (Ω). Let WmEM (Ω) be the space of functions u
such that u and its distribution derivatives up to order m lie
in EM (Ω), and Wm

0 EM (Ω) is the (norm) closure of D(Ω) in
WmLM (Ω).

Since we are going to work with two generalized N -
functions, say P and M , such that P �M , we will consider
the following assumptions for both complementary functions
P̄ and M̄ :

lim
|ξ|→∞

ess inf
x∈Ω

M̄(x, ξ)

|ξ|
=∞, (9)

and

lim
|ξ|→∞

ess inf
x∈Ω

P̄ (x, ξ)

|ξ|
=∞. (10)

Remark 2.7: From Remark 2.1 in [22] we have that the
assumptions (9) and (10) provide the following:

sup
ξ∈B(0,R)

ess sup
x∈Ω

M(x, ξ) <∞ for all 0 < R < +∞, (11)

and

sup
ξ∈B(0,R)

ess sup
x∈Ω

P (x, ξ) <∞ for all 0 < R < +∞. (12)

Also notice that (11) implies (7).
Definition 2.8: We say that a sequence (un) ⊂ W 1LM (Ω)

converges to u ∈ W 1LM (Ω) for the modular convergence
in W 1LM (Ω) if, for some h > 0,

lim
n→∞

%̄
(1)
M,Ω((un − u)/h) = 0.

The following spaces of distributions will also be used:

W−1LM̄ (Ω) =
{
f ∈ D′(Ω) / f =

∑
|α|≤1

(−1)|α|Dαfα

for some fα ∈ LM̄ (Ω)
}

and

W−1EM̄ (Ω) =
{
f ∈ D′(Ω) / f =

∑
|α|≤1

(−1)|α|Dαfα

for some fα ∈ EM̄ (Ω)
}
.

Lemma 2.9: If P � M and un → u for the modular
convergence in LM (Ω), then un → u strongly in EP (Ω).
In particular, LM (Ω) ⊂ EP (Ω) and LP̄ (Ω) ⊂ EM̄ (Ω) with
continuous injections.

Proof 2.10: Let ε > 0 be given. Let λ > 0 be such that∫
Ω

M
(
x,
un − u
λ

)
→ 0, as n→∞.

Therefore, there exists h ∈ L1(Ω) such that

M
(
x,
un − u
λ

)
≤ h and un → u a. e. in Ω

for a sub-sequence still denoted (un). Since P �M , then for
all r > 0 there exists t0 > 0 such that

P (x, rt)

M(x, t)
≤ 1, a. e. in Ω and for all t ≥ t0.

For r = λ
ε and t = t′

λ , we get

P (x, t
′

ε )

M(x, t
′

λ )
≤ 1, when t′ ≥ t0λ.

Then

P
(
x,
un − u
ε

)
≤M

(
x,
un − u
λ

)
+ sup
t′∈B(0,t0λ)

ess sup
x∈Ω

P (x, t′/ε)

≤h+ sup
t′∈B(0,t0)

ess sup
x∈Ω

P (x, t′/ε) for a. a. x ∈ Ω.

Since h + supt′∈B(0,t0λ) ess supx∈Ω P (x, t
′

ε ) ∈ L1(Ω) (from
Remark 2.7), it yields, by the Lebesgue dominated conver-
gence theorem,

P
(
x,
un − u
ε

)
→ 0 in L1(Ω),

hence, for n big enough, we have ‖un − u‖P,Ω ≤ ε. That is,
un → u in LP (Ω).

The continuous injection LM (Ω) ⊂ EP (Ω) is trivial since
the convergence in LM (Ω) implies the modular convergence
in this space. On the other hand, since P �M is equivalent
to M̄ � P̄ , this yields the continuous injection LP̄ (Ω) ⊂
EM̄ (Ω).

Lemma 2.11: (Lemma 2.2 in [30]) Let (wn) ⊂ LM (Ω),
w ∈ LM (Ω), (vn) ⊂ LM̄ (Ω) and v ∈ LM̄ (Ω). If wn → w in
LM (Ω) for the modular convergence and vn → v in LM̄ (Ω)
for the modular convergence, then

lim
n→∞

∫
Ω

wnv dx =

∫
Ω

wv dx and lim
n→∞

∫
Ω

wnvn dx =

∫
Ω

wv dx.

Lemma 2.12: Let (un) ⊂ EM (Ω) with un → u in EM (Ω).
Then there exist h ∈ LM (Ω) and a subsequence (un′) such
that (a. e. stands for ‘almost everywhere’)

|un′(x)| ≤ h(x) a. e. in Ω, and un′ → u(x) a. e. in Ω.

Proof 2.13: If un′ = u for some subsequence (un′), then
the result is trivial. Thus, we may assume that for n ≥ 1 large
enough (and some subsequence, if necessary, still denoted in
the same way) it is 0 < 2‖un − u‖(M) ≤ 1. Then

‖Mx(2(un − u)‖L1(Ω) =

∫
Ω

Mx

(
2‖un − u‖(M)

un − u
‖un − u‖(M)

)
≤ 2‖un − u‖(M)

∫
Ω

Mx

( un − u
‖un − u‖(M)

)
≤ 2‖un − u‖(M).

Thus, ‖Mx(2(un − u)‖L1(Ω) → 0, as n → ∞. Therefore
there exists h1 ∈ L1(Ω) and a subsequence (un′) such that
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un′ → u(x) a. e. in Ω and Mx(2(un′(x) − u(x)) ≤ h1(x)
a. e. in Ω, which implies that

|un′ | ≤ |u(x)|+ 1

2
M−1
x (h1(x))

def
= h(x).

Since∫
Ω

Mx

(
|u(x)|+ 1

2
M−1
x (h1(x))

)
≤ 1

2

∫
Ω

Mx(2u(x))

+
1

2

∫
Ω

h1(x) <∞,
we finally obtain h ∈ LM (Ω).

Lemma 2.14: (Cf. [4]) Let Ω be a bounded and Lipschitz-
continuous domain in Rd and let M and M̄ be two comple-
mentary Musielak-Orlicz functions in Ω×R which satisfy the
following conditions:
(i) There exists a constant A > 0 such that for all x, y ∈ Ω

with 0 < |x− y| ≤ 1
2 one has

M(x, s)

M(y, s)
≤ s−

A
log |x−y| for all s ≥ 1. (13)

(ii) There exists a constant C > 0 such that

M̄(x, 1) ≤ C a. e. in Ω. (14)

Then the space D(Ω) is dense in LM (Ω) with respect to the
modular convergence, D(Ω) is dense in W 1

0LM (Ω) for the
modular convergence and D(Ω̄) is dense in W 1LM (Ω) for
the modular convergence.

Remark 2.15: By taking s = 1 in (13) it yields that
M(x, 1) = constant for a. a. x ∈ Ω. In particular, the
condition (8) is obviously verified and also∫

Ω

M(x, 1) dx <∞.

Remark 2.16: (Cf. [9]) Let p : Ω 7→ (1,∞) be a measurable
function such that there exists a constant A > 0 such that for
all points x, y ∈ Ω with |x− y| < 1/2, one has the inequality

|p(x)− p(y)| ≤ − A

log |x− y|
.

Then the following Musielak-Orlicz functions satisfy the as-
sumption (13):

1) M(x, s) = sp(x);
2) M(x, s) = sp(x) log(1 + s);
3) M(x, s) = s log(1 + s)(log(e− 1 + s))p(x).
Poincaré’s inequality does not hold in generalized Orlicz-

Sobolev spaces unless the Musielak-Orlicz function M(x, s)
verifies some structural assumption. To this end, we introduce
the following definition [3].

Definition 2.17: A generalized function M(x, s) is said
to satisfy the Y -condition on a non-empty bounded interval
(a, b) ⊂ R, if either

(Y0)


there exist s0 ≥ 0 and 1 ≤ i ≤ N such that the function
xi ∈ (a, b) 7→M(x, s) changes constantly its
monotony on both sides of s0 (that is, for s ≥ s0

and 0 ≤ s < s0),

or

(Y∞)

 there exists 1 ≤ i ≤ N such that for all s ≥ 0,
the function xi ∈ (a, b) 7→M(x, s)
is monotone on (a, b).

Here, xi stands for the i-th component of x ∈ Ω.
Lemma 2.18: (Poincaré’s inequality [3]) Let Ω be a bounded

and Lipschitz-continuous domain in Rd and let M and M̄
be two complementary Musielak-Orlicz functions in Ω × R.
Assume that M verifies (13) and the Y -condition, and also that
M̄ verifies (7) and (14). Then there exists a constant C0 =
C0(Ω,M) > 0 such that

‖u‖M,Ω ≤ C0‖∇u‖M,Ω, for all u ∈W 1
0LM (Ω). (15)

From this point on we will always assume that the hypoth-
esis of Lemma 2.18 hold true.

Remark 2.19: Let M be a Musielak-Orlicz function such
that (15) is verified and let u ∈W 1

0LM (Ω). Assume that, for
some constant C ≥ 0, one has

∫
Ω
M(x,∇u) dx ≤ C. Then,

‖u‖1,M,Ω ≤ C ′ where C ′ = (C0+1) max(C, 1). Indeed, since
‖u‖1,M,Ω = ‖u‖M,Ω + ‖∇u‖M,Ω, by using (15), we get

‖u‖1,M,Ω ≤ C0‖∇u‖M,Ω + ‖∇u‖M,Ω ≤ (C0 + 1)‖∇u‖M,Ω.

Now, if C ≥ 1, according to the convexity of M(x, ·), it yields∫
Ω

M
(
x,
∇u
C

)
dx ≤ 1

C

∫
Ω

M(x,∇u) dx ≤ C

C
= 1,

this means that C ∈ {λ > 0,
∫

Ω
M(x,∇u/λ) dx ≤ 1},

hence ‖∇u‖M,Ω ≤ C. On the other hand, if C < 1, then∫
Ω
M(x,∇u) dx ≤ C < 1, which yields ‖∇u‖M,Ω ≤ 1.

Inhomogeneous Musielak-Orlicz-Sobolev spaces. When
dealing with parabolic equations in the context of Musielak-
Orlicz-Sobolev spaces we need to introduce some particular
spaces which take into account the different orders of dif-
ferentiation with respect to the spatial variables and the time
variable.

Let Ω be a bounded and open subset of Rd and let QT =
Ω× (0, T ) for some T > 0. Let M = M(x, s) be a Musielak-
Orlicz function in Ω × R (here we do not consider a more
general case where M = M(x, t, s), (x, t) ∈ QT ). For each
α = (α1, . . . , αd) ∈ Zd, αj ≥ 0, j = 1, . . . , d, we denote by
Dα
x the distributional derivative on QT of multiindex α with

respect to the variable x ∈ Rd. The inhomogeneous Musielak-
Orlicz-Sobolev spaces of order one are defined as follows:

W 1,xLM (QT ) = {u ∈ LM (QT ) /Dα
xu ∈ LM (QT ) for all α, |α| ≤ 1}

and

W 1,xEM (QT ) = {u ∈ EM (QT ) /Dα
xu ∈ EM (QT ) for all α, |α| ≤ 1}

This last space is a subspace of the first one, and both are
Banach spaces under the assumption (8) and with norm

‖u‖ =
∑
|α|≤1

‖Dα
xu‖M,QT .

These spaces are considered as subspaces of the product space
ΠLM (QT ) which has (d+ 1) copies.
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We shall also consider the weak-∗
topologies σ(ΠLM (QT ),ΠEM (QT )) and
σ(ΠLM (QT ),ΠLM (QT )). If u ∈ W 1,xLM (QT ) then
the function t :→ u(t) is defined on (0, T ) with values
in W 1LM (Ω). If, further, u ∈ W 1,xEM (QT ) then this
function is a W 1EM (Ω)-valued and is strongly measurable.
The space W 1,xLM (QT ) is not in general separable. If
u ∈ W 1,xLM (QT ), we cannot conclude that the function
u(t) is measurable on (0, T ). However, the scalar function
t → ‖u(t)‖M,Ω is in L1(0, T ). The space W 1,x

0 EM (QT ) is
defined as the (norm) closure in W 1,xEM (QT ) of D(Q). We
can easily show as in [4] that when Ω is a Lipschitz-continuous
domain then each element u of the closure of D(QT ) with
respect of the weak-∗ topology σ(ΠLM ,ΠEM̄ ) is limit, in
W 1,xLM (QT ), of some subsequence (un) ⊂ D(QT ) for the
modular convergence; i. e., there exists λ > 0 such that for
all α with |α| ≤ 1∫

QT

M
(
x,
Dα
xun −Dα

xu

λ

)
dx dt→ 0 as n →∞,

and, in particular, this implies that (un) converges to u
in W 1,xLM (QT ) for the weak-∗ topology σ(ΠLM ,ΠLM̄ ).
Consequently

D(QT )
σ(ΠLM ,ΠLM̄ )

= D(QT )
σ(ΠLM ,ΠEM̄ )

.

This space will be denoted by W 1,x
0 LM (QT ). Furthermore,

W 1,x
0 EM (QT ) = W 1,x

0 LM (QT ) ∩ΠEM̄ (QT ).

Poincaré’s inequality also holds in W 1,x
0 LM (QT ), i. e. there

exists a constant C > 0 such that for all u ∈ W 1,x
0 LM (QT )

one has ∑
|α|≤1

‖Dα
xu‖M,QT ≤ C

∑
|α|=1

‖Dα
xu‖M,QT . (16)

The dual space of W 1,x
0 EM (QT ) will be denoted by

W−1,xLM̄ (QT ), and it can be shown that

W−1,xLM̄ (QT ) =

f =
∑
|α|≤1

Dα
xfα / fα ∈ LM̄ (QT ),

 .

for all α.
This space will be equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤1

‖Dα
xfα‖M̄,QT

where the infimum is taken over all possible functions fα ∈
LM̄ (QT ) from which the decomposition f =

∑
|α|≤1D

α
xfα

holds true.
We also denote by W−1,xEM̄ (QT ) the subspace of

W−1,xLM̄ (QT ) consisting of those linear forms which are
σ(ΠLM ,ΠEM̄ )-continuous. It can be shown that

W−1,xEM̄ (QT ) =

f =
∑
|α|≤1

Dα
xfα / fα ∈ EM̄ (QT )

 .

III. Compactness results

In the sequel, we will make use of the following results
which concern mollification with respect to time and space
variables and some trace results. For a function u ∈ L1(QT )
we introduce the function ũ ∈ L1(Ω × R) as ũ(x, s) =
u(x, s)χ(0,T ) and define, for all µ > 0, t ∈ [0, T ] and
a.e. x ∈ Ω, the function uµ given as follows

uµ(x, t) = µ

∫ t

−∞
ũ(x, s)exp(µ(s− t)) ds. (17)

Lemma 3.1: ( [2]).
1) Let u ∈ LM (QT ). Then uµ ∈ C([0, T ];LM (Ω)) and

uµ → u as µ → +∞ in LM (QT ) for the modular
convergence.

2) Let u ∈ W 1,xLM (QT ). Then uµ ∈
C([0, T ];W 1LM (Ω)) and uµ → u as µ → +∞
in W 1,xLM (QT ) for the modular convergence.

3) Let u ∈ EM (QT ) (respectively, u ∈ W 1,xEM (QT )).
Then uµ → u as µ → +∞ strongly in EM (QT )
(respectively, strongly in W 1,xEM (QT )).

4) Let u ∈ W 1,xLM (QT ) then ∂uµ
∂t = µ(u − uµ) ∈

W 1,xLM (QT ).
5) Let (un) ⊂W 1,xLM (QT ) and u ∈W 1,xLM (QT ) such

that un → u strongly in W 1,xLM (QT ) (respectively,
for the modular convergence). Then, for all µ > 0,
(un)µ → uµ strongly in W 1,xLM (QT ) (respectively,
for the modular convergence).

Lemma 3.2: [2] Let M be a Musielak function. Let Y be
a Banach space such that the following continuous imbedding
holds L1(Ω) ⊂ Y. Then, for all ε > 0 and all λ > 0 there is
Cε such that for all u ∈W 1,xLM (QT ) with ∇uλ ∈ KM (QT )

‖u‖L1(Ω) ≤ ελ(

∫
QT

M(x,
∇u
λ

) dx dt+T )+Cε‖u‖L1(0,T ;Y ).

(18)
Lemma 3.3: [2] Let Y be a Banach space such that

L1(Ω) ⊂ Y with continuous imbedding.
If F is bounded in W 1,x

0 LM (QT ) and is relatively compact
in L1(0, T ;Y ) then F is relatively compact in L1(QT ).

Lemma 3.4: (cf. [33]) Let QT = Ω × (0, T ), let M a
Musielak-Orlicz function, EM (Ω) the Musielak-Orliccz space
on Ω and EM (QT ) the inhomogeneous Musielak-Orlicz space
on QT . Then there embeddings map

EM (QT ) ⊆ L1(0, T ;EM (Ω)). (19)

Lemma 3.5: Let QT = Ω× (0, T ), let M a Musielak-Orlicz
function, W 1EM (Ω) the Musielak-Orliccz-Sobolev space on
Ω and W 1EM (QT ) the inhomogeneous Musielak-Orlicz-
Sobolev space on QT . Then the following embeddings

W 1EM (QT ) ⊂ L1
(
0, T ;W 1EM (Ω)

)
(20)

W−1EM (QT ) ⊂ L1
(
(0, T );W−1EM (Ω)

)
(21)

are continuous
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Proof 3.6: Let u ∈ W 1EM (QT )), we have u ∈ EM (QT )
and Dα

xu ∈ EM (QT ). By the previous lemma, we get∫ T

0

||u||M,Ω dt ≤ (T + 1)||u||M,QT , (22)

and∫ T

0

||Dα
xu||M,Ω dt ≤ (T + 1)||Dα

xu||M,QT for all |α| ≤ 1,

(23)
which implies∫ T

0

||u||L1(0,T ;W 1EM (Ω)) dt ≤ (T + 1)||u||W 1,xE(QT ). (24)

Consequently (20) is proved.
Using the same Technics we will prove (21). Since every f ∈
W−1,xEM (QT ) reads as

f =
∑
|α|≤1

Dα
x gα where gα ∈ EM (QT )

and
‖f‖W−1,xLM (QT ) =

∑
|α|≤1

‖gα‖M,QT
.

This gives∫ T

0

∑
|α|≤1

‖gα(t)‖M,Ω ≤ (1 + T )‖f‖W−1,xLM (QT ),

by definition of the quotient norm of W−1LM (Ω) we have

‖f(t)‖W−1LM (Ω) ≤
∑
|α|≤1

‖gα(t)‖M,Ω,

and then∫ T

0

‖f(t)‖W−1LM (Ω)dt ≤ (T + 1)‖f‖W−1,xLM (QT ).

This gives the desired result.
Theorem 3.7: [2] Let M be a Musielak function. If F

is bounded in W 1,x
0 LM (QT ) and ∂f

∂t : f ∈ F is bounded in
W−1,xLM (QT ), then F is relatively compact in L1(Q).

Lemma 3.8: [40] Let B be a Banach space.
If f ∈ D′ (]0, T [;B) is such that ∂f

∂t ∈ L1 (0, T ;B) then
f ∈ C (]0, T [;B) and for all h > 0 we have ||τh(f) −
f ||L1(0,T ;B) ≤ h||∂f∂t ||L1(0,T ;B).

Remark 3.9: By the Theorem 3.4, if F ⊂ L1(0, T ;B) is
such that

{
∂f
∂t : f ∈ F

}
is bounded in L1(0, T ;B) then

||τh(f) − f ||L1(0,T ;B) → 0 as h → 0 uniformly with respect
to f ∈ F .

Corollary 3.10: Let M be a Musielak-Orlicz function. Let
(un) be a sequence of W 1,xLM (QT ) such that

un ⇀ u weakly in W 1,xLM (QT ) for σ(ΠLM , ΠEM )

and
∂un
∂t

= hn + kn in D
′
(QT )

with (hn) bounded in W−1,xLM (QT ) and (kn) bounded in
the space L1(QT ) of measures on QT . Then

un → u strongly in L1
loc(QT ).

If further un ∈W 1,x
0 LM (QT ) then un → u in L1(QT ).

Proof 3.11: The proof is easily adapted from that given in
[12] by using Theorem 3.7 and Remark 3.9 instead of lemma
[40].

IV. Existence result

Let Ω be a bounded Lipschitz domain in RN (N ≥ 2), T >
0 and set QT = Ω× [0, T ]. We denote Qτ = Ω× [0, τ ]. Let M
and P two Musielak-Orlicz functions such that P � M and
their conjugate respectively M and P satisfy (9) and (10).
Consider a second-order partial differential operator

A : D(A) ⊂W 1,xLM (QT )→ W−1,xLM (QT )

in divergence form

A(u) = −div(a(x, t, u,∇u))

where

a : Ω×R×RN → RN is a Carathéodory function satisfying
(25)

for almost every (x, t) ∈ QT and all s ∈ R, ξ 6= ξ ∈ RN

|a(x, t, s, ξ)| ≤ β(c1(x, t)+M
−1

x P (x, k1|s|+M
−1

x M(x, k1|ξ|)
(26)

[a(x, t, s, ξ)− a(x, t, s, ξ
′
)][ξ − ξ

′
] > 0 (27)

a(x, t, s, ξ)ξ ≥ α[M(x, |s|) +M(x, |ξ|)] (28)

with c1(x, t) ∈ EM (QT ), c(x, t) ≥ 0 and α, β, k > 0.
The function φ is a Carathéodory function satisfing the fol-
lowing conditions

|Φ(x, t, s)| ≤ γ(x, t)P
−1

x P (x, |s|), (29)

with γ ∈ L∞(QT )

f ∈ L1(QT ) (30)

u0 ∈ L1(Ω). (31)

Lemma 4.1: Under assumptions (25)- (28), let (zn) be a
sequence in W 1,x

0 LM (QT ) such that,

(i) zn ⇀ z in W 1,x
0 LM (QT ) for σ(ΠLM (QT ), ΠEM )

(ii) (a(x, t, zn,∇zn))n is bounded in (LM (QT ))N

(iii)

∫
QT

[a(x, t, zn,∇zn)− a(x, t, zn,∇zχs)][∇zn −∇zχs] dx dt

→ 0.
(32)

as n and s tend to∞, and where χ is the characteristic function
of

Qs = {(x, t) ∈ QT ; |∇z| ≤ s}

Then,
∇zn → ∇z a.e. in QT , (33)
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lim
n→∞

∫
QT

[a(x, t, zn,∇zn)∇zn dx dt =

∫
QT

[a(x, t, z,∇z)∇z dx dt

(34)

M(x, |∇zn|)→M(x, |∇z|) strongly in L1(QT ) (35)

Proof 4.2: We proceed as in the case of Orlicz spaces (see
[1]), we get the desired result.

V. DEFINITION OF AN ENTROPY SOLUTION.

The definition of an entropy solution for problem (1) can
be stated as follows.

Definition 5.1:
A measurable function u : Ω × (0, T ) → R is called

entropy solution of (1) if u belongs to L∞(0, T ;L1(Ω)),
TK(u) belongs to D(A) ∩W 1,x

0 LM (QT ) for every K > 0,
ΘK(u(., t)) belongs to L1(Ω) for every t ∈ [0, T ] and for
every K > 0 and u satisfies :∫

Ω

ΘK(u− v)dx+ 〈∂v
∂t
, TK(u− v)〉Qτ

+

∫
Qτ

a(x, t, TK(u),∇TK(u))∇TK(u− v) dx dt

+

∫
Qτ

Φ(x, t, u)∇TK(u− v) dx dt

≤
∫
Qτ

fTK(u− v) dx dt+

∫
Ω

ΘK(u0 − v(0))dx,

(36)

and
u(x, 0) = u0(x) for a.e x ∈ Ω, (37)

for every τ ∈ [0, T ], K > 0 and for all v ∈ W 1,x
0 LM (QT ) ∩

L∞(QT ) such that ∂v
∂t belongs to W−1,xLM (QT ) +L1(QT )

(recall that ΘK(r) =

∫ r

0

TK(r)dr is the primitive of the usual

truncation TK).
This section is devoted to establish the following existence

theorem
Theorem 5.2: Assume that the hypotheses (25)-(29) are

satisfied, then there exists at least one solution of problem
(1) in the sens of Definition (36).

Proof 5.3:

Step1 : Approximation problem.

Let fn and u0n regular functions in L1(QT ) (resp L1(Ω))
such that:

fn −→ f in L1(QT ) and ‖fn‖L1 ≤ ‖f‖L1 (38)

and

‖u0n‖L1 ≤ ‖u0‖L1 and u0n −→ u0 in L1(Ω), (39)

as n tends to +∞.
Now, we consider the following regularized problem


∂un
∂t − div

(
a(x, t, un,∇un)

)
− div(Φ(x, t, un)) = fnin QT

un(x, 0) = u0n(x) in Ω
un = 0 on ∂Ω× (0, T ),

(40)

The problem (40) can be written as follows


∂un
∂t − div

(
Fn(x, t, un,∇un)

)
= fn in QT

un(x, 0) = u0n(x) in Ω
un = 0 on ∂Ω× (0, T ),

(41)

with Fn(x, t, un,∇un) = a(x, t, un,∇un) + (Φ(x, t, un).
Note that Fn satisfies the assumptions (A1), (A2) and (A3)
as in [27].
Indeed, using (26), (27)and (29) we deduce that Fn satisfies
(A1), (A2), it remains to prove (A3). Let un ∈W 1,x

0 LM (QT )
by (29) and Young inequality we obtain

|Φ(x, t, un)∇un| ≤ |γ(x, t)|(P (x, |un|) + P (x, |∇un|))
≤ Cγ(P (x, |un|) + P (x, |∇un|)).

(42)
P �M , then we have for all ε > 0 there exists t0 that

P (x, t) ≤M(x, εt) for all t ≥ t0, a.e.x ∈ Ω. (43)

Let
E1 = {(x, t) ∈ QT ; |un(x, t)| ≥ t0}

and E2 = {(x, t) ∈ QT ; |∇un(x, t)| ≥ t0}

Case 1 : if (x, t) ∈ E1 ∩ E2

In virtue of (42) and (43), we have

|Φ(x, t, un)∇un| ≤ Cγ(M(x, ε|un|) +M(x, ε|∇un|)). (44)

Without loss of generality, we can assume that ε = α
2Cγ+α

which is ε ≤ 1, then by convexity of the function M(x, .),
one has

|Φ(x, t, un)∇un| ≤ Cγε(M(x, |un|) +M(x, |∇un|))
≤ α

2 (M(x, |un|) +M(x, |∇un|)),
(45)

which implies

Φ(x, t, un)∇un ≥ −
α

2
(M(x, |un|) +M(x, |∇un|)). (46)

From (28) and (46), we have

Fn(x, t, un,∇un).∇un ≥
α

2
M(x, |∇un|). (47)

Case 2 : if (x, t) ∈ Ec1 ∩ Ec2
We have

|Φ(x, t, un)∇un| ≤ Cγ(P (x, |un|) + P (x, |∇un|)) (48)

Using the Remark 2.7, we obtain

P (x, |un|) ≤ ess sup
x∈Ω

P (x, t0) < R1 <∞ (49)

and
P (x, |∇un|) ≤ ess sup

x∈Ω
P (x, t0) < R2 <∞. (50)
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From (49) and (50) we get

|Φ(x, t, un)∇un| ≤ C0. (51)

By (28) and (51) we deduce

Fn(x, t, un,∇un).∇un ≥ αM(x, |∇un|)− C0 (52)

Case 3 :if (x, t) ∈ Ec1 ∩ E2.
In this case, by using Remark 2.7 and (43) we get :

|Φ(x, t, un)∇un| ≤ C1 + CγM(x, r|∇un|). (53)

We can assume again that r = α
2Cγ+α which is r ≤ 1, then

by convexity of the function M(x, .), one has

Φ(x, t, un)∇un ≥ −
α

2
M(x, |∇un|)− C1.

which implies by using (27)

Fn(x, t, un,∇un).∇un ≥ α

2
M(x, |∇un|) + αM(x, |un|)− C1

≥ α

2
M(x, |∇un|)− C1. (54)

By the same way if (x, t) ∈ E1 ∩ Ec2 we get

Fn(x, t, un,∇un).∇un ≥ α

2
M(x, |un|) + αM(x, |∇un|)− C2.

≥ αM(x, |∇un|)− C2. (55)

Finally, from (47), (52) and (54) the assumption (A3) in
[27] is true.
Then there exists at least one solution un of (40), (the
existence of un can be obtained from Galerkin solutions
corresponding to the equation (40) as in [27], see Theorem
1 of [2] for more details).

Step 2 : A priori estimates.

Lemma 5.4: Suppose that the assumptions (25) - (29) are
true and let un be a solution of the approximate problem (40).
Then for all K,n > 0, we have∫

QT

M(x, |∇TK(un)|) dx dt ≤ CK. (56)

Where C is a positive constant independent of n and K.
And

lim
K→∞

mes {(x, t) ∈ QT ; |un| > K} = 0. (57)

Proof 5.5: Let us note that in the following of this work we
will set

ΘK(t) =

∫ t

0

TK(s)ds (58)

the primitive of the truncated function TK(s).
Taking v = TK(un)χ(0,τ) as test function in the equation (40)
we obtain ∫

Ω

ΘK(un)(τ)dx−
∫

Ω

ΘK(u0n)dx

+

∫
Qτ

a(x, t, un,∇un)∇TK(un) dx dt

+

∫
Qτ

Φ(x, t, un)∇TK(un) dx dt

=

∫
Qτ

fnTK(un) dx dt,

(59)

since ∇TK(un) = 0 in set {(x, t) ∈ QT ; |un(x, t)| > K}
which implies that∫

Ω

ΘK(un)(τ)dx+

∫
Qτ

a(x, t, TK(un),∇TK(un))∇TK(un) dx dt

+

∫
Qτ

Φ(x, t, TK(un))∇TK(un) dx dt

=

∫
Qτ

fnTK(un) dx dt+

∫
Ω

ΘK(u0n)dx.

(60)
First, from (38) and (39) we have∫
Qτ

fnTK(un) dx dt+

∫
Ω

ΘK(u0n)dx ≤ K(||f ||1,QT +||u0||1,Ω) ≡ C2K,

(61)
where C2 = (||f ||L1(QT ) + ||u0||L1(QT )).
Moreover, by the Young’s inequality and the fact that γ ∈
L∞(QT ) we have∫
Qτ

Φ(x, t, TK(un))∇TK(un) dx dt ≤ Cγ
∫
Qτ

P (x, |TK(un)|) dx dt

+ Cγ

∫
Qτ

P (x,∇TK(un)) dx dt.

(62)
where Cγ = ||γ||L∞(QT ).
From the Remark 2.7 and (43)we therefore get∫
Qτ

P (x, TK(un)) dx dt =

∫
{(x,t)∈Qτ ;|TK(un)|≤t0}

P (x, TK(un)) dx dt

+

∫
{(x,t)∈Qτ ;|TK(un)|≥t0}

P (x, TK(un)) dx dt

≤
∫
{(x,t)∈Qτ ;|TK(un)|≤t0}

ess sup
x∈Ω

P (x, |t0|) dx dt

+

∫
{(x,t)∈Qτ ;|TK(un)|≥t0}

M(x, ε|TK(un)|) dx dt

≤ R3 +

∫
Qτ

M(x, ε|TK(un)|) dx dt.

(63)
Using the same technics as above, one has∫
Qτ

P (x, |∇TK(un)|) dx dt ≤ R4+

∫
Qτ

M(x, ε|∇TK(un)|) dx dt.

(64)
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Hence∫
Qτ

Φ(x, t, TK(un))∇TK(un) dx dt

≤ Cγ(R3 +R4) + Cγ

∫
Qτ

M(x, ε|TK(un)|) dx dt

+Cγ

∫
Qτ

M(x, ε|∇TK(un)|) dx dt,

(65)

where R3 and R4 are constants not depending on K and n.
By choosing ε = α

2Cγ+α and convexity of the function M we
get ∫

Qτ

Φ(x, t, TK(un))∇TK(un) dx dt

≤ Cγ(R3 +R4) + α
2

∫
Qτ

M(x, |TK(un)|) dx dt

+α
2

∫
Qτ

M(x, |∇TK(un)|) dx dt.

(66)

From (28), (61) and (66) we deduce that∫
Qτ

M(x, |∇TK(un)|) dx dt ≤ CK for K ≥ 1. (67)

Where C is a positive constant independent of K and n.
We prove (57 ). Indeed, it result from (28) and (67) that

meas{(x, t) ∈ QT ; |un| > K} ≤ CK

inf
x∈Ω

M(x,K)
. (68)

Let tending K to infinity. We deduce:

lim
K→∞

meas{(x, t) ∈ QT ; |un| > K} = 0. (69)

Then we conclude that there exists some vK ∈
W 1,x

0 LM (QT ) such that

TK(un) ⇀ vK weakly in W 1,x
0 LM (QT ) for σ(ΠLM ,ΠEM ).

(70)
Let ε > 0, since (57), (70) and the fact TK(un) is a Cauchy
sequence in measure, there exists some Kε > 0 such that
meas{(x, t) ∈ QT ; |un−um| > λ} for all n,m > N0(Kε, λ).
This proves that (un)n is a Cauchy sequence in measure in
QT thus converges almost everywhere to some measurable
function u.
We conclude that there exists some u ∈ W 1,x

0 LM (QT ) such
that

TK(un) ⇀ TK(u) weakly in W 1,x
0 LM (QT ) , (71)

for σ(ΠLM ,ΠEM )
Next, if we multiply the approximation equation (40) by
θ
′

K(t), where θK(.) is a C2(R nondecreasing function such
that θK(t) = t for |t| ≤ K

2 and θK(t) = K for |t| ≥ K, we
obtain

∂θk(un)
∂t = div

(
a(x, t, un,∇un)θ

′

k(un)
)

− a(x, t, un,∇un)θ′′k(un)∇un
+div

(
θ′k(un)Φ(x, t, un)

)
−Φ(x, t, un)θ′′k(un)∇un + fnθ

′
k(un),

(72)

in the sense of distributions.
Due to(26) and the fact that TK(un) is bounded in
W 1,x

0 LM (QT ), the term
-div

(
a(x, tun,∇un)θ

′

K(un)
)

+ a(x, t, un,∇un)θ
′′

K(un) +

fnθ
′

K(un) is bounded in W−1LM (QT ). Furthermore, we have
supp(θ

′

K) and supp(θ
′′

K) are both in [−K,K], which gives

|
∫
QT

θ
′′

K(un)Φ(x, t, un)∇un dx dt|

≤ ‖θ
′′

K‖L∞
∫
QT

|Φ(x, t, TK(un)||TK(un)| dx dt,

by (29), γ ∈ L∞(QT ) and the Young’s inequality it follows
that

|
∫
QT

θ
′′

K(un)Φ(x, t, un)∇un dx dt| ≤ ‖θ
′′

K‖L∞‖γ‖L∞(QT )

×
[ ∫

QT

P (x, |∇TK(un)|) dx dt+

∫
QT

P (x, |∇TK(un)|) dx dt
]
.

(73)
By applying the same Technics as in the proof of Lemma 5.4,
we prove that θ

′′

K(un)Φ(x, t, un)∇un is bounded in L1(QT ).

In the same way, we show that div
(
θ′k(un)Φ(x, t, un)

)
is

bounded in W−1,xLM (QT ).
Hence all bove implies that

∂θk(un)

∂t
is bounded in W−1,xLM (QT ) + L1(QT . (74)

Proceeding as in [35] and using Corollary 3.10, we easily show
that there exists a mesurable function u ∈ L∞(0, T ;L1(Ω))
such that for every K > 0

TK(un) ⇀ Tk(u) weakly in W 1,xLM (QT ) for σ(ΠLM , ΠEM )
(75)

and

TK(un)→ Tk(u) strongly in L1(QT ) and a.e in QT
(76)

Now, we prove the following lemma
Lemma 5.6: Let un be a solution of the approximate

problem (40), then for all K ≥ 0,(
a(x, t, TK(un),∇TK(un))

)
n

is bounded in (LM (QT ))N .

(77)
Proof 5.7: Let ϕ ∈ (EM (QT ))N be arbitrary. In view of

the monotonicity of a, one easily has

(
a
(
x, t, un,∇un

)
− a
(
x, t, un, ϕ

))(
∇un − ϕ

)
≥ 0. (78)

Hence ∫
{|un|≤K}

a
(
x, t, un,∇un

)
ϕ dx dt (79)

≤
∫
{|un|≤K}

a
(
x, t, un,∇un

)
∇un dx dt

+

∫
{|un|≤K}

a
(
x, t, un, ϕ

)(
ϕ−∇un

)
dx dt.
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Using (26) and since TK(un) is bounded in W 1,x
0 LM (QT ),

one easily deduces that∫
QT

a
(
x, t, TK(un),∇TK(un)

)
∇TK(un) dx dt ≤ CK1.

(80)
Combining the fact that TK(un) is bounded in W 1,x

0 LM (QT ),
(79) and (80), we get∫

QT

a
(
x, t, TK(un),∇TK(un)

)
ϕ dx dt ≤ CK2. (81)

Hence, thanks the Banach-Steinhaus Theorem, the sequence(
a(x, t, TK(un),∇TK(un))

)
n

is a bounded in (LM (QT ))N ,
thus up to a sub-sequence

a
(
x, t, TK(un),∇TK(un)

)
⇀ lK in (LM (QT ))N (82)

for σ(ΠLM ,ΠEM ), for some lK ∈ (LM (QT ))N .
Step 3 : Mudular convergence of the gradient.

This step is devoted to introduce for K ≥ 0 fixed, a time
regularization wiµ,j of the function TK(u).

We first introduce two smooth sequences, namely, (vj) ⊂
D(QT ) such that vj → u in W 1,x

0 LM (QT ) for the modular
convergence and almost everywhere in QT , and (ψi) ⊂ D(Ω)
which converges strongly to u0 in L2(Ω) and such that
‖ψi‖L2(Ω) ≤ 2‖u0‖L2(Ω), for all i ≥ 1. For a fixed positive
real number K, we consider the truncation function at height
K, TK . Then, for every K,µ > 0 and i, j ∈ N, we introduce
the function wiµ,j ∈ W

1,x
0 LM (QT ) (to simplify the notation,

we drop out the index K) defined as wiµ,j = TK(vj)µ +
e−µtTK(ψi), where TK(vj)µ is the mollification with respect
to time of TK(vj) given in (17). From Lemma (3.1), we know
that

∂wiµ,j
∂t

= µ(TK(vj)−wiµ,j), wiµ,j(·, 0) = TK(ψi), |wiµ,j | ≤ K
(83)

a.e in QT ,

wiµ,j → wiµ
def
= TK(u)µ + e−µtTK(ψi) in W 1,x

0 LM (QT ),
(84)

for the modular convergence as j →∞.

TK(u)µ + e−µtTK(ψi)→ TK(u) in W 1,x
0 LM (QT ), (85)

for the modular convergence as µ→∞.
We will establish the following proposition.
Proposition 5.8: Let un be a solution of the approximate

problem (25)-(29). Then, for any K ≥ 0 :

∇un → ∇u a.e. in QT , (86)

a
(
x, t, TK(un),∇TK(un)

)
⇀ a

(
x, t, TK(u),∇TK(u)

)
(87)

weakly in (LM (QT ))N ,

M(|∇TK(un)|)→M(|∇TK(u)|) strongly in L1(QT ),
(88)

as n tends to +∞.
Let us consider the function hm defined on R by:

hm(s)

 1 if |s| ≤ m
−|s|+m+ 1 if m ≤ |s| ≤ m+ 1
0 if |s| ≥ m+ 1,

for any m ≥ K.
Using the admissible test function ϕµ,in,j,m = (TK(un) −

wµi,j)hm(un) as test function in (40) leads to

〈∂un
∂t

, ϕµ,in,j,m〉+

∫
QT

a(x, t, un,∇un) (89)

×(∇TK(un)−∇wµi,j)hm(un) dx dt.

+

∫
QT

a(x, t, un,∇un)(TK(un)− wµi,j)∇unh
′
m(un) dx dt

+

∫
{m≤|un|≤m+1}

Φ(x, t, un)∇unh′m(un)(TK(un)−wµi,j) dx dt

+

∫
QT

Φ(x, t, un)hm(un)(∇TK(un)−∇wµi,j) dx dt

=

∫
QT

fnϕ
µ,i
n,j,m dx dt.

Denoting by ε(n, j, µ, i) any quantity such that,

lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, i) = 0.

By the definition of the sequence wµi,j , we can establish the
following lemma.

Lemma 5.9: Let ϕµ,in,j,m = (TK(un)−wµi,j)hm(un), we have
for any K ≥ 0:

〈∂un
∂t

, ϕµ,in,j,m〉 ≥ ε(n, j, µ, i), (90)

where 〈, 〉 denotes the duality pairing between L1(QT ) +
W−1,xLM (QT ) and L∞(QT ) ∩W 1,x

0 LM (QT ).
Proof 5.10: Using the same techniques as in Orlicz space

(see [6]), we can easily get the result.
Now, we turn to complete the proof of Proposition 5.8., we

prove below the following results for any fixed K ≥ 0.∫
QT

fnϕ
µ,i
n,j,m dx dt = ε(n, j, µ). (91)

∫
QT

Φ(x, t, un)hm(un)(∇TK(un)−∇wµi,j) dx dt = ε(n, j, µ),

(92)

∫
{m≤|un|≤m+1}

Φ(x, t, un)∇unh
′

m(un)(TK(un)−wµi,j) dx dt = ε(n, j, µ).

(93)

∫
QT

a(x, t, un,∇un)∇unh′m(un)(TK(un)−wµi,j) dx dt ≤ ε(n, j, µ,m).

(94)
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∫
QT

[
a
(
x, t, TK(un),∇TK(un)

)
−a
(
x, t, TK(un),∇TK(u)χs

)]
(95)

×
[
∇TK(un)−∇TK(u)χs

]
dx dt ≤ ε(n, j, µ,m, s).

Proof of (91) : By the almost everywhere convergence of
un, we have (TK(un)−wµi,j)hm(un) converges to (TK(u)−
wµi,j)hm(u) in L∞(QT ) weak-* and then,∫

QT

fn(TK(un)− wµi,j)hm(un) dx dt

→
∫
QT

f(TK(u)− wµi,j)hm(u) dx dt.

So that,

(TK(u)−wµi,j)hm(u)→ (TK(u)− TK(u)µ− e−µtTK(ψi))

in L∞(QT ) weak-* as j →∞, and also

(TK(u)− TK(u)µ − e−µtTK(ψi))→ 0

in L∞(QT ) weak-* as µ→ +∞. Then, we deduce that,∫
QT

fn(TK(un)− wµi,j)hm(un) dx dt = ε(n, j, µ). (96)

Proof of (92) and (93): For n large enough, we have

Φ(x, t, un)hm(un) = Φ(x, t, Tm+1(un))hm(Tm+1(un))
(97)

a.e in QT .
In order to prove (92) and (93), we will apply Lemma 2.9,

Let remark that P � M ⇔ M � P (see [25]). Thus
we need only to show that Φ(x, t, Tm+1(un)) converge to
Φ(x, t, Tm+1(u)) with respect to the modular convergence in
(LP (QT ))N to get the desired result.

Indeed, we put Mn =

P
(
x, Φ(x,t,Tm+1(un))−Φ(x,t,Tm+1(u))

µ

)
. we have that Φ is

a Carathéodory function and using the pointwise convergence
of un we get that Φ(x, t, Tm+1(un))→ Φ(x, t, Tm+1(u)) a.e
in QT as n→∞, then since P (0) = 0, one has

Mn = P
(
x,

Φ(x, t, Tm+1(un))− Φ(x, t, Tm+1(u))

µ

)
→ 0,

(98)
a.e in QT as n→∞.

By the convexity of P , for µ and n large enough and by
(29), we obtain

Mn = P
(
x, Φ(x,t,Tm+1(un))−Φ(x,t,Tm+1(u))

µ

)
≤ Cγ

µ P (x, P
−1

x P (x, |Tm+1(un)|)|)
+
Cγ
µ P (x, P

−1

x P (x, |Tm+1(u)|)|)
≤ 2Cγ

µ ess supx∈Ω P (x,m+ 1) = Cm a.e. in QT .

(99)

By Remark 2.7 we have Cm ∈ L1(QT ). Then, using (98),
(99) and by Lebesgue’s dominated convergence theorem, we
obtain ∫

QT

Mn dx→ 0 as n goes to infinity. (100)

Hence

Φ(x, t, Tm+1(un))→ Φ(x, t, Tm+1(u)) (101)

with repect to the modular convergence in LP (QT ) as n →
+∞. By appling Lemma 2.9. we obtain Φ(x, t, Tm+1(un))→
Φ(x, t, Tm+1(u)) in (EM (QT ))N .

Then by virtue of, ∇TK(un) ⇀ ∇TK(u) weakly in
(LM (QT ))N , then∫

QT

Φ(x, t, un)hm(un)(∇TK(un)−∇wµi,j) dx dt

→
∫
QT

Φ(x, t, u)hm(u)(∇TK(u)−∇wµi,j) dx dt
(102)

as n→ +∞.
In the other hand, by using the modular convergence of wµi,j

as j → +∞ and letting µ tends to infinity, we get (92).
Now we turn to prove (93).
First, remark for n ≥ m+ 1 we have that

∇unh
′

m(un) = ∇Tm+1(un) a.e in QT . (103)

By the almost everywhere convergence of un, we have
(TK(un) − wµi,j) converges to (TK(u) − wµi,j) in L∞(QT )
weak-* and since the sequence (Φ(x, t, Tm+1(un)))n con-
verges strongly in EM (QT ) then,

Φ(x, t, Tm+1(un))(TK(un)−wµi,j)→ Φ(x, t, Tm+1(u))(TK(u)−wµi,j)

converges strongly in EM (QT ) as n goes to +∞.
Using again the fact that, ∇Tm+1(un) ⇀ ∇Tm+1(u)

weakly in (LM (QT ))N as n tends to +∞ we obtain∫
{m≤|un|≤m+1}

Φ(x, t, un)∇unh
′

m(un)(TK(un)− wµi,j) dx dt

→
∫
{m≤|u|≤m+1}

Φ(x, t, u)∇u(TK(u)− wµi,j) dx dt,

(104)
as n tends to +∞.
By using the modular convergence of wµi,j as j → +∞ and

letting µ tends to infinity, we get (93).
Proof of (94): Concerning the third term of the right hand

side of (89) we obtain that∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇unh′m(un)(TK(un)−wµi,j) dx dt

(105)

≤ 2K

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt.

Then by (77). we deduce that,∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇unh′m(un)(TK(un)−wµi,j) dx dt

(106)
≤ ε(n, µ,m). which is the desired results.

Proof of (95): By means of (89)-(94), we obtain∫
QT

a(x, t, un,∇un)(∇TK(un)−∇wµi,j)hm(un) dx dt ≤ ε(n, µ,m).

(107)
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Using the same techniques as [24], we obtain

lim
s→∞

lim
n→∞

∫
QT

[
a
(
x, t, TK(un),∇TK(un)

)

−a
(
x, t, TK(un),∇TK(u)χs

)]
(108)

×
[
∇TK(un)−∇TK(u)χs

]
dx dt = 0.

This implies by the Lemma 4.1., the desired statement and
hence the proof of Proposition 5.8. is achieved.
Step 4 : Passing to the limit

Let v ∈ W 1,xLM (QT ) ∩ L∞ such that ∂v
∂t belongs to

W−1,xLM (QT ) +L1(QT ), there exists a prolongation v = v
on QT , v ∈W 1,xLM (Ω×R)∩L1(Ω×R)∩L∞(Ω×R), and

∂v

∂t
∈W−1,xLM (Ω× R) + L1(Ω× R).

There exists also a sequence (ωj) ⊂ D(Ω× R) such that

ωj → v in W 1,x
0 LM (Ω× R), and

∂ωj
∂t →

∂v
∂t in W−1,xLM (Ω× R) + L1(Ω× R).

(109)

for the modular convergence and ||ωj ||∞,QT ≤ (N +
2)|v||∞,QT (see [2]).

Now, let us take TK(un − ωj)χ(0,τ)
as a test function in

(40), thus for every τ ∈ [0, T ], we get

〈∂un
∂t

, TK(un − ωj)〉Qτ

+

∫
Qτ

a(x, t, TK̂(un),∇TK̂(un))∇TK(un − ωj) dx dt

+

∫
Qτ

Φ(x, t, TK̂(un))∇TK(un − ωj) dx dt

=

∫
Qτ

fnTK(un − ωj) dx dt,

(110)
where K̂ = K + C||v||∞,QT , which implies

〈∂un
∂t

, TK(un − ωj)〉Qτ

+

∫
Qτ∩{|un−ωj |≤K}

a(x, t, TK̂(un),∇TK̂(un))∇un dx

−
∫
Qτ∩{|un−ωj |≤K}

a(x, t, TK̂(un),∇TK̂(un))∇ωj dx

+

∫
Qτ

Φ(x, t, TK̂(un))∇TK(un − ωj) dx dt

=

∫
Qτ

fnTK(un − ωj) dx dt.

(111)
By Fatou’s lemma and the fact that

a(x, t, TK̂(un),∇TK̂(un)) ⇀ a(x, t, TK̂(u),∇TK̂(u))

weakly in (LM (QT ))N for σ(ΠLM ,ΠEM ), one easily sees
that

∫
Qτ∩{|un−ωj |≤K}

a(x, t, TK̂(un),∇TK̂(un))∇un dx

−
∫
Qτ∩{|un−ωj |≤K}

a(x, t, TK̂(un),∇TK̂(un))∇ωj dx

≥
∫
Qτ∩{|u−ωj |≤K}

a(x, t, TK̂(u),∇TK̂(u))∇u dx

−
∫
Qτ∩{|u−ωj |≤K}

a(x, t, TK̂(u),∇TK̂(u))∇ωj dx.

(112)
As in (98), we obtain Φ(x, t, TK̂(un)) → Φ(x, t, TK̂(u))

in EM (QT ) as n → +∞ and using the fact that ∇TK(un −
ωj) ⇀ ∇TK(u− ωj) in LM (QT ), as n→ +∞, we can easy
see that

∫
Qτ

Φ(x, t, TK̂(un))∇TK(un − ωj) dx dt

→
∫
Qτ

Φ(x, t, TK̂(u))∇TK(u− ωj) dx dt.

(113)
Since TK(un − ωj) → TK(u − ωj) weakly∗ in L∞ as n →
+∞, we have

∫
Qτ

fnTK(un − ωj) dx dt→
∫
Qτ

fTK(u− ωj) dx dt.

Turn now to see the first term of (110),

〈∂un
∂t

, TK(un − ωj)〉Qτ =

∫
Ω

ΘK(un − ωj)dx

+〈∂ωj∂t , TK(un − ωj)〉Qτ
−
∫

Ω

ΘK(un0 − ωj(0))dx.

(114)
First, let see that un → u in C([0, T ];L1(Ω)) (see [19]).
Moreover, since ΘK(un − ωj)(τ) ≤ K|un(τ)| + K|ωj(τ)|,
we have by Lebesgue Theorem

∫
Ω

ΘK(un − ωj)(τ)dx→
∫

Ω

ΘK(u− ωj)(τ)dx,

as n → +∞. Then, we can pass to the limit in (114) as
n→ +∞ we obtain

lim
n→+∞

〈∂un
∂t

, TK(un − ωj)〉Qτ =

∫
Ω

ΘK(u− ωj)dx

+〈∂ωj∂t , TK(u− ωj)〉Qτ
−
∫

Ω

ΘK(u0 − ωj(0))dx.

(115)
Now, let n goes to infinity in (110), we get
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∫
Ω

ΘK(u− ωj)dx+ 〈∂ωj
∂t

, TK(u− ωj)〉Qτ

+

∫
Qτ

a(x, t, u,∇u)∇TK(u− ωj) dx dt

+

∫
Qτ

Φ(x, t, u)∇TK(u− ωj) dx dt

≤
∫
Qτ

fTK(u− ωj) dx dt

+

∫
Ω

ΘK(u0 − ωj(0))dx.

(116)

By (109), as j tends to +∞ we have

〈∂ωj
∂t

, TK(u− ωj)〉Qτ → 〈
∂v

∂t
, TK(u− v)〉Qτ .

Moreover, for every τ ∈ [0, T ], we have ||ωj −
v(τ)||L1(Ω) → 0 as j → +∞. Therefore, we pass now to
the limit as j → +∞ in (116), we get

∫
Ω

ΘK(u− v)dx+ 〈∂v
∂t
, TK(u− v)〉Qτ

+

∫
Qτ

a(x, t, u,∇u)∇TK(u− v) dx dt

+

∫
Qτ

Φ(x, t, u)∇TK(u− v) dx dt

≤
∫
Qτ

fTK(u− v) dx dt+

∫
Ω

ΘK(u0 − v(0))dx.

(117)

The proof of Theorem 5.2 is complete.
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