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Abstract—In the present paper a definition of fuzzy algebra
is presented, the condition of approximation of fuzzy number
is proven. Finally the application to solve a fuzzy differential
equation is given.

Index Terms—Fuzzy metric space, generalized fuzzy deriva-
tive, fuzzy algebra.

I. Introduction

Many scientific papers and many applications have
proved that fuzzy set theory let us effectively model and
transform imprecise information. It is not surprising that
fuzzy numbers play an important role among all fuzzy
sets since the predominant carrier of information are
numbers. However, the crucial point in fuzzy modeling
is to assign membership functions corresponding to fuzzy
numbers that represent vague concepts and imprecise
terms expressed often in a natural language. The rep-
resentation does not only depend on the concept but
also on the context in which it is used. But even for
similar contexts, fuzzy numbers representing the same
concept may vary considerably. Therefore, the problem
of constructing meaningful membership functions is a
difficult one and numerous methods for their construction
have been described in the literature. All these methods
may be classified into direct or indirect methods that
involve one or multiple experts [13].
In practice, fuzzy intervals are often used to represent
uncertain or incomplete information. An interesting prob-
lem is to approximate general fuzzy intervals by interval,

triangular, and trapezoidal fuzzy numbers, so as to sim-
plify calculations. Recently, many scholars investigated
these approximations of fuzzy numbers. According to
the different aspects of distance, these researches can be
grouped into two classes: the Euclidean distance class [12]
and the non-Euclidean distance class [8]. The autor in
[10] give a necessary and sufficient conditions of linear
operators which are preserved by interval, triangular, sym-
metric triangular, trapezoidal, or symmetric trapezoidal
approximations of fuzzy numbers. In [11] presented a new
nearest trapezoidal approximation operator preserving
expected interval. But there is no work that has presented
a stable part by multiplication, which is our goal in this
paper with the approximation to one of whose element
in order for example to give a sens of the solution of a
differential equation whose contains the product of two
specific fuzzy numbers.
This paper is organized as follows: After this introduction
we present some concepts concerning the fuzzy metric
space in section 2. The fuzzy algebra is defined in Section
3. A method of approximation is is discussed is Section 4,
and we presented an application in the las section.

II. preliminaries
In this section, we present some definitions and

introduce the necessary notation, which will be used
throughout the paper.

We denote E1 the class of function defined as follows:
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E1 =
{
u : R → [0, 1], u satisfies (1− 4) below

}
1) u is normal, i.e. there is a x0 ∈ R such that u(x0) =

1;
2) u is a fuzzy convex set;
3) u is upper semi-continuous;
4) u closure of

{
x ∈ R1, u(x) > 0

}
is compact

For all α ∈ (0, 1] the α-cut of an element of E1 is defined
by

uα =
{
x ∈ R, u(x) ≥ α

}
By the previous properties we can write

uα = [u(α), u(α)]

The multiplication by a scalar is defined as follows

λu(x) =

{
u
(
x
λ

)
, λ ̸= 0

0̃, λ = 0.

By the extension principal of Zadeh we have

(u+ v)α = uα + vα;

(λu)α = λuα

For all u, v ∈ E1 and λ ∈ R
The distance between two element of E1 is given by

(see [4])

d(u, v) = sup
α∈(0,1]

max
{
|u(α)− v(α)|, |u(α)− v(α)|

}
The metric space (E1, d) is complete, separable and

locally compact and the following properties for metric
d are valid:

1) d(u+ v, u+ w) = d(u, v);
2) d(λu, λv) = |λ|d(u, v);
3) d(u+ v, w + z) ≤ d(u,w) + d(v, z);

Remark II.1. The space (E1, d) is a linear normed space
with ∥u∥ = d(u, 0).

Definition II.2. Let u, v ∈ E1. We put uα =
[
u(α), u(α)

]
and vα =

[
v(α), v(α)

]
. We define the product of u and v

by(
u⊙ v

)α
=
[
min

{
u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)

}
,

max
{
u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)

}]
Definition II.3. [6] The generalized Hukuhara difference
of two fuzzy numbers u, v ∈ E1 is defined as follows

u−g v = w ⇔

{
u = v + w

or v = u+ (−1)w

In terms of α-levels we have

(
u−g v

)α
=
[
min {u(α)− v(α), u(α)− v(α)} ,

max {u(α)− v(α), u(α)− v(α)}
]

and the conditions for the existence of w = u−g v ∈ E1

are

case (i)
{
w(α) = u(α)− v(α) and w(α) = u(α)− v(α)

with w(α) increasing, w(α) decreasing, w(α) ≤ w(α)
(II.1)

case (ii)
{
w(α) = u(α)− v(α) and w(α) = u(α)− v(α)

with w(α) increasing, w(α) decreasing, w(α) ≤ w(α)
(II.2)

for all α ∈ [0, 1].

Proposition II.4. [6]

∥u−g v∥ = d(u, v)

Since ∥.∥ is a norm on E1 and by the proposition (II.4)
we have

Proposition II.5.

∥λu−g µu∥ = |λ− µ|∥u∥

Let f : [a, b] ⊂ R → E1 a fuzzy-valued function. The
α-level of f is given by

f(x, α) =
[
f(x, α), f(x, α)

]
, ∀x ∈ [a, b], ∀α ∈ [0, 1].

Definition II.6. [6] Let x0 ∈ (a, b) and h be such that
x0 + h ∈ (a, b), then the generalized Hukuhara derivative
of a fuzzy value function f : (a, b) → E1 at x0 is defined
as

lim
h→0

∥∥∥f(x0 + h)−g f(x0)

h
−g f

′
gH(x0)

∥∥∥ = 0 (II.3)

If fgH(x0) ∈ E1 satisfying (II.3) exists, we say that f is
generalized Hukuhara differentiable (gH-differentiable for
short) at x0.

Definition II.7. [6] Let f : [a, b] → E1 and x0 ∈ (a, b),
with f(x, α) and f(x, α) both differentiable at x0.
We say that

1) f is [(i)− gH]-differentiable at x0 if

f ′
i,gH(x0) =

[
f ′(x, α), f

′
(x, α)

]
(II.4)

2) f is [(ii)− gH]-differentiable at x0 if

f ′
ii,gH(x0) =

[
f
′
(x, α), f ′(x, α)

]
(II.5)

Theorem II.8. Let f : J ⊂ R → E1 and g : J → R and
x ∈ J . Suppose that g(x) is differentiable function at x
and the fuzzy-valued function f(x) is gH-differentiable at
x. So

(fg)′gH = (f ′g)gH + (fg′)gH
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Proof. Using (II.5), for h enough small we get∥∥∥ f(x+h)g(x+h)−gf(x)g(x)
h −g((f

′(x)g(x))gH + (f(x)g′(x))gH)
∥∥∥

=
∥∥∥f(x+ h)g(x+ h)−g f(x)g(x+ h) + f(x)g(x+ h)

h
−gf(x)g(x)

h
−g ((f

′(x)g(x))gH + (f(x)g′(x))gH)
∥∥∥

=
∥∥∥ (f(x+ h)−g f(x))g(x+ h) + f(x)(g(x+ h)−g g(x))

h

−g ((f
′(x)g(x))gH + (f(x)g′(x))gH)

∥∥∥
≤
∥∥∥ (f(x+ h)−g f(x))g(x+ h)

h
−g ((f

′(x)g(x))gH)
∥∥∥

+
∥∥∥ (f(x)(g(x+ h)−g g(x))

h
−g ((f(x)g

′(x))gH)
∥∥∥

≤
∥∥∥ (f(x+ h)−g f(x))

h
g(x+ h)−g ((f

′(x)g(x))gH)
∥∥∥

+
∥∥∥f(x) ((g(x+ h)−g g(x))

h
−g ((f(x)g

′(x))gH)
∥∥∥

which complet the proof by passing to limit.

Definition II.9. [9] Let f : [a, b] → E1. We say that f(x)
is fuzzy Riemann integrable to I ∈ E1 if for any ϵ > 0,
there exists δ > 0 such that for any division P = {[u, v]; ξ}
with the norms ∆(P ) < δ, we have

d

( ∗∑
p

(v − u)f(ξ),I

)
< ϵ

where
∑∗

p denote the fuzzy summation. We choose to
write I =

∫ b

a
f(x)dx.

Theorem II.10. [6] If f is gH-differentiable with no
switching point in the interval [a, b] then we have∫ b

a

f(t)dt = f(b)−g f(a)

III. Fuzzy algebra
In this section consider P the set of all µ ∈ E1 such

that
µα =

[
− aα, aα

]
, ∀α ∈ [0, 1]

where a ∈ [0, 1]

Lemma III.1.
(
P,+

)
is a group.

Proof. First {0} = [0, 0] ∈ P.
Now let µ, ν ∈ P putting µα = [−aα, aα] and να =
[−bα, bα].
Using case (i) we get

µα −g ν
α =

[
− aα − bα, aα + bα

]
=
[
− cα, cα

]
where c = (aα + bα)

1
α .

So µ−g ν ∈ P, thus
(
P,+

)
is a group.

Lemma III.2. The product ⊙ is stable on P.

Proof. Let µ, ν ∈ P putting µα = [−aα, aα] and να =
[−bα, bα].
We have

(µ⊙ ν)α =
[
− (ab)α, (ab)α

]
so µ⊙ ν ∈ P.

Theorem III.3. The quadruplet
(
P,+,⊙, .

)
is an algebra.

Proof. First prove that the triplet
(
P,+, .

)
is a vector

space.
By lemmas III.1 and III.2

(
P,+

)
is a group (−g is the

inverse of +) and stable by ..
Now let λ ∈ R+ and γ ∈ R− and µ ∈ P, we have

(λ+ γ) .µ = λ.µ−g (−γ).µ

so
(
P, .
)

is a vector space which implies the result.

Definition III.4. The quadruplet
(
P,+,⊙, .

)
is said a fuzzy

algebra.

Definition III.5. Let u, v ∈ E1. We put uα =
[
u(α), u(α)

]
and vα =

[
v(α), v(α)

]
. we define

d2
(
u, v
)
=
[ ∫ 1

0

(u(α)− v(α))
2
dα+

∫ 1

0

(u(α)− v(α))
2
dα
] 1

2

By Brezis [7] L2(R) is a complet space it is easy to
deduce the following proposition.

Proposition III.6.
(
E1, d2

)
is a complet metric space.

Now we define the following map

⟨., .⟩ :

{
P × P → R
(µ, ν) → ⟨µ, ν⟩ =

∫ 1

0
µ(α)ν(α) + µ(α)ν(α)dα

Proposition III.7. The map ⟨., .⟩ define an inner product
on P.

Proof. The linearity of integral show the bilinearity of the
map, also the symmetry is clear, we have ⟨µ, µ⟩ ≥ 0.
If ⟨µ, µ⟩ = 0 then µ(α) = µ(α) = 0, a.e. on [0, 1] we get
µ = 0.

By III.6 we have

Proposition III.8.
(
E1, ⟨., .⟩

)
is a Hilbert space.

Note that the norm associated to the inner product ⟨., .⟩
is defined as follows

∥µ∥2 =

√∫ 1

0

µ2(α) + µ2(α)dα, ∀µ ∈ E1.

Proposition III.9. P is a convex closed subspace of E1, by
respect the d2 metric.

Proof. Let µ ∈ P, then there exist µn ∈ P such that
d2
(
µn, µ

)
→ 0, By Brezis [7] theorem 4.9 page 94 there

existe a subsequence µnk
of µn converge to µ, if we put

µα
n =

[
− aαn, a

α
n

]
for all α ∈ (0, 1] then ank

converge
to a ∈ R+, which implies that µα =

[
− aα, aα

]
, for all
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α ∈ (0, 1], by consequent µ ∈ P.
Now let t ∈ [0, 1] and µ ∈ P, we get

t
[
− aα, aα

]
+ (1− t)

[
− bα, bα

]
=
[
− cα, cα

]
where c =

(
taα + (1− t)bα

) 1
α .

Hence P is convex.

IV. Approximation
In this section we consider the set E1

−(a) defined as
E1

− =
{
µ ∈ E1, suppµ = [−1, 1], and µ1 = [−a, a],

for certain a ∈ [0, 1]
}
.

Proposition IV.1. The set E1
− is stable by the product ⊙.

Proof. Let µ, ν ∈ E1
−(a). First note that suppµ ⊂

suppµ⊙ ν. In fact:
Let x ∈ suppµ, then there is (xn)n ⊂ R such that xn → x
as n → ∞, and µ(xn) > 0 which implies that µ(x) ≥ 0, we
have two possibility if µ(x)ν(x) > 0 then x ∈ supp(µ) if
not, µ(x)ν(x) = 0, since supp(ν) = supp(µ) = [−1, 1] then
x = −1 or x = 1 but these two values are in supp(µν).
Conversely: by the same it become that supp(µ ⊙ ν) ⊂
supp(µ).
Thus

supp(µ⊙ ν) =
[
− 1, 1

]
By the definition of the product of two fuzzy number we
have

(µ⊙ ν)1 =
[
− ab, ab

]
where µα = [−aα, aα] and να = [−bα, bα].
So

µ⊙ ν ∈ P.

Definition IV.2. Two fuzzy numbers µ and ν are approx-
imately equal if and only if given a sufficiently small, we
find that:

|µ(x)− ν(x)| ≤ ϵ, ∀x ∈ R.

we write µ ≈ ν.

Proposition IV.3. Two fuzzy numbers µ and ν of P are
approximately equal if and only if given a sufficiently
small, we find that:

d2
(
u, v
)
≤ ϵ

Proof. We put µα =
[
− aα, aα

]
and να =

[
− bα, bα

]
, for

all α ∈ [0, 1]. Where a, b ∈ [0, 1].
Since µ is increasing on [−1, a] we get µ(α) = µ−1(xα),
also µ decreasing on [a, 1] then µ(α) = µ−1(yα), this two
functions are continuous at α ∈ [0, 1].
If µ and ν are approximately equal, i.e.∣∣µ(x)− ν(x)

∣∣ ≤ ϵ

we put c = min{a, b} thus∣∣µ−1(x)− ν−1(x)
∣∣ ≤ ϵ

on [−1, c], and ∣∣µ−1(x)− ν−1(x)
∣∣ ≤ ϵ

on [c, 1]. Which implies that∣∣µ(α)− ν(α)
∣∣ ≤ ϵ

and ∣∣µ(α)− ν(α)
∣∣ ≤ ϵ

so
d2
(
µ, ν

)
≤ ϵ.

Conversely:
Suppose thet d2µ, ν ≤ ϵ, then µ(α) = ν(α) and µ(α)−ν(α)
a.e.
By the continuity of α → µ(α)−ν(α), we get µ(α) = ν(α)
and µ(α) − ν(α), for all α ∈ [0, 1]. Using the idea of the
previous part of this demonstration we have∣∣µ(x)− ν(x)

∣∣ ≤ ϵ, ∀x ∈ R.

Which complet the proof.

Proposition IV.4. Any operation based on the extension
principale of Zadeh preserve by the previous approxima-
tion.

Proof. Let µ, ν, µ′ and ν′ four fuzzy number such that

µ ≈ µ′ and ν ≈ ν′.

We put ξ = µ ∗ ν and ς = µ′ ∗ ν′.
Our goal is to prove that

ξ ≈ ς.

We can write

ξ(z) = sup
z=x∗y

min {µ(x), ν(x)}

and
ς(z) = sup

z=x∗y
min {µ′(x), ν′(x)}

thus∣∣ξ(z)−ς(z)
∣∣ = ∣∣ sup

z=x∗y
min {µ(x), ν(x)}− sup

z=x∗y
min {µ′(x), ν′(x)}

∣∣
≤
∣∣ sup
z=x∗y

min {µ′(x) + ϵ, ν′(x) + ϵ}− sup
z=x∗y

min {µ′(x), ν′(x)}
∣∣

≤
∣∣ sup
z=x∗y

min {µ′(x), ν′(x)}+ ϵ− sup
z=x∗y

min {µ′(x), ν′(x)}
∣∣

≤ ϵ.

which complet the proof.

Theorem IV.5. Let for all µ ∈ E1, there exist ν ∈ P such
that

µ ≈ ν.

Proof. Since
(
E1, ⟨., .⟩

)
is a Hilbert space and P is a

subset convex closed subset of E1 then by theorem 5.2
in [7] there existe ν such that

d2
(
µ, ν

)
≤ ϵ
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which implies µ ≈ ν.

Theorem IV.6. Let µ ∈ E1
− and ν ∈ P such that να =[

− aα, aα
]
.

A sufficient condition for µ ≈ ν is:

max
x∈J

max
{
|µ(x−D)− µ(x)| , |µ(x+D)− µ(x)|

}
≤ ϵ

where{
D = maxα∈(0,1]

∣∣aα − µ(α)
∣∣, if J = [a, 1]

D = maxα∈(0,1]

∣∣aα + µ(α)
∣∣, if J = [−1, a]

Proof. For all x ∈ [−1, a] it is clear that

x−D ≤ µ−1(x) ≤ x+D

since µ is an increasing function on [−1, a] then

µ(x−D) ≤ x ≤ µ(x+D)

So that ∀x ∈ [−1, a], if α = µ(x) and α′ = ν(x), we get∣∣α− α′∣∣ = ∣∣µ(x)− ν(x)
∣∣

≤ max
{
|µ(x−D)− µ(x)| , |µ(x+D)− µ(x)|

}
.

in the same on [a, 1] we find the same result.

Theorem IV.7. Let u, v : I → E1 tow derivative functions,
where I is an intevalle of R.
If u(t) ≈ v(t) for all t ∈ I, then u′(t) ≈ v′(t) for all t ∈ I.

Proof. If u and v are [(i)− gH]-differentiable or u and v
are [(ii)− gH]-differentiable

u′
i,gH(x) =

[
u′(x, α), u′(x, α)

]
and

v′i,gH(x) =
[
v′(x, α), v′(x, α)

]
or

u′
i,gH(x) =

[
u′(x, α), u′(x, α)

]
and

v′i,gH(x) =
[
v′(x, α), v′(x, α)

]
By the proposition IV.3 we have u(t) ≈ v(t).
Now if u is [(i) − gH]-differentiable and v is [(ii) − gH]-
differentiable then

u′
i,gH(x) =

[
u′(x, α), u′(x, α)

]
and

v′i,gH(x) =
[
v′(x, α), v′(x, α)

]
this time also by the proposition IV.3 we have u(t) ≈ v(t).

It is easy to note that

Corollary IV.8. If u(t) ≈ v(t) then
∫
u(t) ≈

∫
v(t).

V. Application
In this section consider the following equation

y′(t) = ãy(t), t ≤ 0 (V.1)

with y ∈ E1
− and ã ∈ E1

−.
By approximation there exists z, b̃ ∈ P such that

z ≈ y and b̃ ≈ ã.

Now solving the following equation in P

z′ = b̃z

by putting bα =
[
−bα, bα

]
and z(t) =

[
−(η(t))α, (η(t))α

]
.

we get
(η′(t))α = bα(η(t))α, ∀α ∈ [0, 1].

Which implies that

η(t) = cebt

where c is a constant.
Since t ≤ 0, then z ∈ E1

−. Using theorem IV.6 each fuzzy
element µ verified the condition is a solution.

Remark V.1. By this method the solution of V.1 is not
unique.

VI. Conclusions
This study makes it possible to give a meaning to the

multiplication of two fuzzy numbers which makes us solve
certain differential equations with uncertain initial values.
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