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Abstract—In this paper, we study the Dirichlet problem asso-
ciated to the degenerate nonlinear elliptic equations{

Lu(x) = µ in Ω,

u(x) = 0 on ∂Ω,

where

Lu(x) = −div
[
ω1(x)A(x,∇u(x)) + ω2(x)B(x, u(x),∇u(x))

]
+ ω1(x)g(x, u(x)) + ω2(x)H(x, u(x),∇u(x)),

is a second order degenerate elliptic operator, with A : Ω ×
Rn −→ R, B : Ω × R × Rn −→ R, g : Ω × R −→ R and H :
Ω×R×Rn −→ R are Caratéodory functions, who satisfies some
conditions, and the right-hand side term µ belongs to L1(Ω) +
n∏

j=1

Lp′(Ω, ω1−p′

1 ), ω1 and ω2 are weight functions that will be

defined in the preliminaries.
Index Terms—Nonlinear degenerate elliptic equations, Dirich-

let problem, weighted Sobolev spaces, weak solution

I. INTRODUCTION

Let Ω be a bounded open subset in Rn ( n ≥ 2), ∂Ω its
boundary and p > 1 and ω1, ω2 are two weights functions
in Ω (ω1 and ω2 are measurable and strictly positive a.e. in
Ω). Let us consider the following nonlinear degenerate elliptic
problem {

Lu(x) = µ in Ω,

u(x) = 0 on ∂Ω,
(1)

where, L is a second order degenerate elliptic operator

Lu(x) = −div
[
ω1(x)A(x,∇u(x)) + ω2(x)B(x, u(x),∇u(x))

]
+ ω1(x)g(x, u(x)) + ω2(x)H(x, u(x),∇u(x)), (2)

and

µ = f0 −
n∑
j=1

Djfj , (3)

with f0 ∈ L1(Ω) and for j = 1, ..., n, fj ∈ Lp
′
(Ω, ω1−p′

1 ).
Furthermore, the functions A : Ω×Rn −→ R, B : Ω×R×
Rn −→ R, g : Ω × R −→ R and H : Ω × R × Rn −→ R
are Caratéodory functions, who satisfying the assumptions of
growth, ellipticity and monotonicity.

In the past decade, much attention has been devoted to
nonlinear elliptic equations because of their wide application
to physical models such as non-Newtonian fluids, boundary
layer phenomena for viscous fluids, and chemical heteroge-
nous model, we mention some works in this direction [1], [4],
[5], [7]. One of the motivations for studying (1) comes from
applications to electrorheological fluids (see [19] for more
details) as an important class of non-Newtonian fluids.

In general, the Sobolev spaces W k,p(Ω) without weights
occur as spaces of solutions for elliptic and parabolic par-
tial difierential equations. For degenerate partial differential
equations, where we have equations with various types of
singularities in the coefficients, it is natural to look for
solutions in weighted Sobolev spaces [2], [4], [12], [13], [16].
The type of a weight depends on the equation type.

For ω1 ≡ ω2 ≡ 1 (the non weighted case) and A(x,∇u) ≡
g ≡ 0, Equation of the from (1) have been widely studied in
[10], where the authors obtain some existence results for the
solutions (see also the references therein).

Boccardo et al. [6] considered the nonlinear boundary value
problem

−div(a(x, u,∇u)) + g(x, u,∇u) = µ,

where µ ∈ L1(Ω) +W−1,p′(Ω) and g(x, u,∇u) ∈ L1(Ω). By
combining the truncation technique with some delicate test
functions, the authors showed that the problem has a solution
u ∈W 1,p

0 (Ω). Furthermore the degenerate case with difierent
conditions haven been studied by many authors (we refer to
[11], [22] for more details).
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In [3], the authors proved the existence results, in the
setting of weighted Sobolev spaces, for quasilinear degener-
ated elliptic problems associated with the following equation
−div

(
a(x, u,∇u)

)
+ g(x, u,∇u) = f − divF , where g

satisfies the sign condition.
In [8] the author proved the existence of solutions for the

problem (1) when ω1 ≡ ω2 and A(x,∇u) ≡ g ≡ 0. When
H(x, u,∇u) ≡ g ≡ 0 existence result for the Problem (1)
have been shown in [9].

Our objectif, in this paper, is to study equation (1) by adopt-
ing Sobolev spaces with weight W 1,p

0 (Ω, ω1) (see Definition
2.3). By apply the main theorem on monotone operators (see
Theorem 2.3), we show that the Problem (1) admits one and
only solution u ∈W 1,p

0 (Ω, ω1).
The paper is organized as follows. In Section 2, we give

some preliminaries and the definition of weighted Sobolev
spaces and some technical lemmas needed in our peper. In
Section 3, we make precise all the assumptions on A, B,
g, H and we introduce the notion of weak solution for the
Problem (1). Our main result and his proof, the existence and
uniqueness of solution to Equation (1), are collected in Section
4. Section 5 is devoted to an example which illustrates our
main result.

II. PRELIMINARIES

In this section, we present some definitions, and preliminar-
ies facts which are used throughout this paper.

By a weight, we shall mean a locally integrable function
ω on Rn such that ω(x) > 0 for a.e. x ∈ Rn. Every weight
ω gives rise to a measure on the measurable subsets on Rn
through integration. This measure will also be denoted by ω.
Thus,

ω(E) =

∫
E

ω(x)dx for measurable subset E ⊂ Rn.

For 0 < p < ∞, we denote by Lp(Ω, ω) the space of
measurable functions f on Ω such that

||f ||Lp(Ω,ω) =

∫
E

|f(x)|pω(x)dx

 1
p

<∞,

where ω is a weight, and Ω be open in Rn.
It is a well-known fact that the space Lp(Ω, ω), endowed

with this norm is a Banach space. We also have that the dual
space of Lp(Ω, ω) is the space Lp

′
(Ω, ω1−p′).

We now determine conditions on the weight ω that guar-
antee that functions in Lp(Ω, ω) are locally integrable on Ω.

Proposition 2.1: [17], [18] Let 1 ≤ p <∞. If the weight ω
is such that

ω
−1
p−1 ∈ L1

loc(Ω) if p > 1,

ess sup
x∈B

1

ω(x)
< +∞ if p = 1,

for every ball B ⊂ Ω. Then,

Lp(Ω, ω) ⊂ L1
loc(Ω).

As a consequence, under conditions of Proposition 2.1, the
convergence in Lp(Ω, ω) implies convergence in L1

loc(Ω).
Moreover, every function in Lp(Ω, ω) has a distributional
derivatives. It thus makes sense to talk about distributional
derivatives of functions in Lp(Ω, ω).

A class of weights, which is particularly well understood,
is the class of Ap-weight that was introduced by B. Mucken-
houpt.

Definition 2.1: Let 1 ≤ p <∞. A weight ω is said to be an
Ap-weight, or ω belongs to the Muckenhoupt class, if there
exists a positive constant C = C(p, ω) such that, for every
ball B ⊂ Rn(

1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

(ω(x))
−1
p−1 dx

)p−1

≤ C if p > 1,(
1

|B|

∫
B

ω(x)dx

)
ess sup

x∈B

1

ω(x)
≤ C if p = 1,

where |.| denotes the n-dimensional Lebesgue measure in Rn.
The infimum over all such constants C is called the Ap
constant of ω. We denote by Ap, 1 ≤ p < ∞, the set of
all Ap weights.

If 1 ≤ q ≤ p < ∞, then A1 ⊂ Aq ⊂ Ap and the Aq
constant of ω equals the Ap constant of ω (we refer to [15],
[16], [20] for more informations about Ap-weights).

Example 2.1: (Example of Ap-weights)
(i) If ω is a weight and there exist two positive constants

C and D such that C ≤ ω(x) ≤ D for a.e. x ∈ Rn,
then ω ∈ Ap for 1 ≤ p <∞.

(ii) Suppose that ω(x) = |x|η , x ∈ Rn. Then ω ∈ Ap if
and only if −n < η < n(p − 1) for 1 ≤ p < ∞
(see Corollary 4.4, Chapter IX in [20]).

(iii) Let Ω be an open subset of Rn. Then ω(x) =
eλϕ(x) ∈ A2, with ϕ ∈W 1,n(Ω) and λ is sufficiently
small (see Corollary 2.18 in [15]).

Definition 2.2: A weight ω is said to be doubling, if there
exists a positive constant C such that

ω(2B) ≤ Cω(B),

for every ball B = B(x, r) ⊂ Rn, where ω(B) =

∫
B

ω(x)dx

and 2B denotes the ball with the same center as B which is
twice as large. The infimum over all constants C is called the
doubling constant of ω.
It follows directly from the Ap condition and Hölder inequality
that an Ap-weight has the following strong doubling property.
In particular, every Ap-weight is doubling (see Corollary 15.7
in [16]).

Proposition 2.2: [21] Let ω ∈ Ap with 1 ≤ p <∞ and let
E be a measurable subset of a ball B ⊂ Rn. Then(

|E|
|B|

)p
≤ Cω(E)

ω(B)

where C is the Ap constant of ω.
Remark 2.1: If ω(E) = 0 then |E| = 0. The measure ω and

the Lebesgue measure |.| are mutually absolutely continuous,
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that is they have the same zero sets
(
ω(E) = 0 if and only

if |E| = 0
)
; so there is no need to specify the measure when

using the ubiquitous expression almost everywhere and almost
every, both abbreviated a.e..
The weighted Sobolev space W 1,p(Ω, ω) is defined as follows.

Definition 2.3: Let Ω ⊂ Rn be open, and let ω be an Ap-
weight, 1 ≤ p < ∞. We define the weighted Sobolev space
W 1,p(Ω, ω) as the set of functions u ∈ Lp(Ω, ω) with weak
derivatives Dju ∈ Lp(Ω, ω), for j = 1, ..., n. The norm of u
in W 1,p(Ω, ω) is given by

||u||pW 1,p(Ω,ω) =

∫
Ω

|u(x)|pω(x)dx+
n∑
j=1

∫
Ω

|Dju(x)|pω(x)dx.

We also define W 1,p
0 (Ω, ω) as the closure of C∞0 (Ω) in

W 1,p(Ω, ω) with respect to the norm ||.||W 1,p(Ω,ω). Note that
C∞0 (Ω) is dense in W 1,p

0 (Ω, ω).
Equipped by this norm, W 1,p(Ω, ω) and W 1,p

0 (Ω, ω) are
separable and reflevixe Banach spaces

(
see Proposition 2.1.2.

in [21] and see [18] for more informations about the spaces
W 1,p(Ω, ω)

)
. The dual of space W 1,p

0 (Ω, ω) is the space
W−1,p′

0 (Ω, ω1−p′).
Let us give the following theorems which are needed later.
Theorem 2.1: [14] Let ω ∈ Ap, 1 ≤ p <∞, and let Ω be a

bounded open set in Rn. If um −→ u in Lp(Ω, ω), then there
exist a subsequence (umk) and a function Φ ∈ Lp(Ω, ω) such
that

(i) umk(x) −→ u(x), mk −→∞, ω-a.e. on Ω.
(ii) |umk(x)| ≤ Φ(x), ω-a.e. on Ω.
Theorem 2.2: [11] (The weighted Sobolev inequality) Let

ω ∈ Ap, 1 ≤ p < ∞, and let Ω be a bounded open set in
Rn. There exist constants CΩ and δ positive such that for all
u ∈W 1,p

0 (Ω, ω) and all θ satisfying 1 ≤ θ ≤ n
n−1 + δ,

||u||Lθp(Ω,ω) ≤ CΩ||∇u||Lp(Ω,ω),

where CΩ depends only on n, p, the Ap constant of ω and the
diameter of Ω.

Theorem 2.3: [22] Let A : X −→ X∗ be a monotone,
coercive and hemicontinuous operator on the real, separable,
reflexive Banach space X . Then the following assertions hold:

(a) For each T ∈ X∗, the equation Au = T has a
solution u ∈ X .

(b) If the operator A is strictly monotone, then equation
Au = T has a unique solution u ∈ X .

III. BASIC ASSUMPTIONS AND NOTION OF SOLUTIONS

A. Basic assumptions

Let us now give the precise hypotheses on the Problem
(1), we assume that the following assumptions: Ω be a
bounded open subset of Rn( n ≥ 2), 1 < q < p < ∞,
let ω1 and ω2 are two weights functions, and let Aj :
Ω × Rn −→ R, Bj : Ω × R × Rn −→ R (j =

1, ..., n), with B(x, η, ξ) =
(
B1(x, η, ξ), ...,Bn(x, η, ξ)

)
and

A(x, ξ) =
(
A1(x, ξ), ...,An(x, ξ)

)
, g : Ω × R −→ R and

H : Ω×R×Rn −→ R satisfying the following assumptions:

(A1) For j = 1, ..., n, Bj , Aj , g and H are Caratéodory
functions.

(A2) There are positive functions
h1, h2, h3, h4, h5, h6 ∈ L∞(Ω) and
K1, K4 ∈ Lp

′
(Ω, ω1)

(
with 1

p + 1
p′ = 1

)
and

K2, K3 ∈ Lq
′
(Ω, ω2)

(
with 1

q + 1
q′ = 1

)
such that :

|A(x, ξ)| ≤ K1(x) + h1(x)|ξ|
p
p′ ,

|B(x, η, ξ)| ≤ K2(x) + h2(x)|η|
q
q′ + h3(x)|ξ|

q
q′ ,

|g(x, η)| ≤ K4(x) + h6(x)|η|
p
p′ ,

and

|H(x, η, ξ)| ≤ K3(x) + h4(x)|η|
q
q′ + h5(x)|ξ|

q
q′ .

(A3) There exists a constant α > 0 such that :

〈A(x, ξ)−A(x, ξ
′
), ξ − ξ

′
〉 ≥ α|ξ − ξ

′
|p,

〈B(x, η, ξ)− B(x, η
′
, ξ
′
), ξ − ξ

′
〉 ≥ 0,(

g(x, η)− g(x, η
′
)
)(
η − η

′
)
≥ 0,

and (
H(x, η, ξ)−H(x, η

′
, ξ
′
)
)(
η − η

′
)
≥ 0,

whenever (η, ξ), (η′, ξ′) ∈ R × Rn with η 6= η
′

and
ξ 6= ξ

′
(

where 〈., .〉 denotes here the usual inner

product in Rn
)

.

(A4) There are constants λ1, λ2, λ3, λ4 > 0 such that :

〈A(x, ξ), ξ〉 ≥ λ1|ξ|p,

〈B(x, η, ξ), ξ〉 ≥ λ2|ξ|q + λ3|η|q,

g(x, η)η ≥ λ4|η|p,

and
H(x, η, ξ)η ≥ 0.

B. Notions of solutions

The definition of a weak solution for Problem (1) can be
stated as follows.

Definition 3.1: We say that an element u ∈W 1,p
0 (Ω, ω1) is

a weak solution of Problem (1) if :∫
Ω

〈A(x,∇u),∇ϕ〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇ϕ〉ω2dx

+

∫
Ω

g(x, u)ϕω1dx+

∫
Ω

H(x, u,∇u)ϕω2dx

=

∫
Ω

f0ϕdx+
n∑
j=1

∫
Ω

fjDjϕdx,

for all ϕ ∈W 1,p
0 (Ω, ω1).

Remark 3.1: We seek to establish a relationship between
ω1 and ω2, in order to ensure the existence and uniqueness
of solution for our Problem (1). At first we notice if ω2

ω1
∈
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Ls(Ω, ω1) where s = p
p−q , 1 < q < p <∞ and ω1, ω2 ∈ Ap,

then, by Hölder inequality we obtain

||u||Lq(Ω,ω2) ≤ Cp,q||u||Lp(Ω,ω1),

where Cp,q = ||ω2

ω1
||1/qLs(Ω,ω1).

IV. MAIN RESULT

A. Result on the existence and uniqueness

In this subsection we will state the existence and uniqueness
of solution to Problem (1) in Theorem 4.1. In the next
subsections we will present the proof.

Theorem 4.1: Let 1 < q < p <∞ and assume that (A1)−
(A4) holds. If

(i) f0/ω2 ∈ Lq
′
(Ω, ω2) and fj/ω1 ∈ Lp

′
(Ω, ω1) (j =

1, ..., n)..
(ii) ω1, ω2 ∈ Ap such that ω2

ω1
∈ Ls(Ω, ω1), where s =

p
p−q .

Then, the Problem (1) has only one solution u ∈W 1,p
0 (Ω, ω1).

B. Proof of Theorem 4.1

The basic idea of our proof is to reduce the Problem (1) to
an operator equation Au = T and apply the Theorem 2.3. The
proof of Theorem 4.1 will be divided into several steps.

1) Equivalent operator equation: In this subsection, we use
the somme tools and the condition (A2) to prove an existence
the operator A such that the Problem (1) is equivalent to the
operator equation Au = T. We introduce the operators

T : W 1,p
0 (Ω, ω1) −→ R

ϕ −→ T(ϕ) =

∫
Ω

f0ϕdx+
n∑
j=1

∫
Ω

fjDjϕdx,

and

B : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R
(u, ϕ) −→ B1(u, ϕ) + B2(u, ϕ) + B3(u, ϕ) + B4(u, ϕ),

where, B1, B2, B3 and B4 are defined as follows

B1 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B1(u, ϕ) =

∫
Ω

〈A(x,∇u),∇ϕ〉ω1dx,

B2 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B2(u, ϕ) =

∫
Ω

〈B(x, u,∇u),∇ϕ〉ω2dx,

B3 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B3(u, ϕ) =

∫
Ω

g(x, u)ϕω1dx.

B4 : W 1,p
0 (Ω, ω1)×W 1,p

0 (Ω, ω1) −→ R

B4(u, ϕ) =

∫
Ω

H(x, u,∇u)ϕω2dx.

Then u ∈ W 1,p
0 (Ω, ω1) is a weak solution of Problem (1) if

and only if

B(u, ϕ) = T(ϕ), for all ϕ ∈W 1,p
0 (Ω, ω1).

We will show that T ∈W−1,p′

0 (Ω, ω1−p′
1 ) and B(u, .) is linear,

for each u ∈W 1,p
0 (Ω, ω1).

(i) Using Hölder inequality and Theorem 2.2(with θ = 1),
we obtain

|T(ϕ)|

≤
∫

Ω

|f0| |ϕ| dx+
n∑
j=1

∫
Ω

|fj | |Djϕ| dx

≤

Cp,q||f0/ω2||Lq′ (Ω,ω2) +
n∑
j=1

||fj/ω1||Lp′ (Ω,ω1)

 ||ϕ||W 1,p
0 (Ω,ω1).

According to f0/ω2 ∈ Lq
′
(Ω, ω2) and f/ω1 ∈

Lp
′
(Ω, ω1), we deduce that T ∈W−1,p′

0 (Ω, ω∗1).
(ii) Let u ∈W 1,p

0 (Ω, ω1). We have

|B(u, ϕ)| ≤ |B1(u, ϕ)|+ |B2(u, ϕ)|+ |B3(u, ϕ)|+ |B4(u, ϕ)|.
(4)

In (4), by (A2), Hölder inequality, Remark 3.1 and
Theorem 2.2(with θ = 1), we have

|B1(u, ϕ)| ≤
∫

Ω

|A(x,∇u)||∇ϕ|ω1dx

≤
∫

Ω

(
K1 + h1|∇u|

p
p′
)
|∇ϕ|ω1dx

≤
(
||K1||Lp′ (Ω,ω1) + ||h1||L∞(Ω)||u||

p
p′

W 1,p
0 (Ω,ω1)

)
||ϕ||W 1,p

0 (Ω,ω1),

and

|B2(u, ϕ)| ≤
∫

Ω

|B(x, u,∇u)||∇ϕ|ω2dx

≤
∫

Ω

(
K2 + h2|u|

q
q′ + h3|∇u|

q
q′
)
|∇ϕ|ω2dx

≤ ||K2||Lq′ (Ω,ω2)Cp,q||∇ϕ||Lp(Ω,ω1) + ||h2||L∞(Ω)C
q
q′
p,q||u||

q
q′

Lp(Ω,ω1)

Cp,q||∇ϕ||Lp(Ω,ω1) + ||h3||L∞(Ω)C
q
q′
p,q||∇u||

q
q′

Lp(Ω,ω1)Cp,q||∇ϕ||Lp(Ω,ω1)

≤
[
Cp,q||K2||Lq′ (Ω,ω2) + Cqp,q

(
||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1)

]
||ϕ||W 1,p

0 (Ω,ω1).

Analogously, we have

|B3(u, ϕ)| ≤
∫

Ω

|g(x, u)||ϕ|ω1dx

≤
(
||K4||Lp′ (Ω,ω1) + ||h6||L∞(Ω)||u||

p
p′

W 1,p
0 (Ω,ω1)

)
||ϕ||W 1,p

0 (Ω,ω1),

and

|B4(u, ϕ)| ≤
∫

Ω

|H(x, u,∇u)||ϕ|ω2dx

≤
[
Cp,q||K3||Lq′ (Ω,ω2) + Cqp,q

(
||h4||L∞(Ω) + ||h5||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1)

]
||ϕ||W 1,p

0 (Ω,ω1).
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Hence, in (4) we obtain, for all u ∈W 1,p
0 (Ω, ω1),

|B(u, ϕ)|
≤
[
‖K1‖Lp′ (Ω,ω1) + ||K4||Lp′ (Ω,ω1) + Cp,q

(
‖K3‖Lq′ (Ω,ω2)

+‖K2‖Lq′ (Ω,ω2)

)
+
(
‖h1‖L∞(Ω) + ‖h6‖L∞(Ω)

)
‖u‖

p
p′

W 1,p
0 (Ω,ω1)

+Cqp,q

(
‖h2‖L∞(Ω) + ‖h3‖L∞(Ω) + ||h4||L∞(Ω) + ||h5||L∞(Ω)

)
‖u‖q−1

W 1,p
0 (Ω,ω1)

]
‖ϕ‖W 1,p

0 (Ω,ω1).

Since B(u, .) is linear and continuous, for each u ∈
W 1,p

0 (Ω, ω1), there exists a linear and continuous
operator denoted by A : W 1,p

0 (Ω, ω1) −→
W−1,p′

0 (Ω, ω1−p′
1 ) such that

〈Au, ϕ〉 = B(u, ϕ), for all u, ϕ ∈W 1,p
0 (Ω, ω1),

where 〈f, x〉 denotes the value of the linear functional f
at the point x . Moreover, we have

‖Au‖∗
≤ ‖K1‖Lp′ (Ω,ω1) + ||K4||Lp′ (Ω,ω1) + Cp,q

(
‖K3‖Lq′ (Ω,ω2)

+‖K2‖Lq′ (Ω,ω2)

)
+
(
‖h1‖L∞(Ω) + ‖h6‖L∞(Ω)

)
‖u‖

p
p′

W 1,p
0 (Ω,ω1)

+Cqp,q

(
‖h2‖L∞(Ω) + ‖h3‖L∞(Ω) + ||h4||L∞(Ω) + ||h5||L∞(Ω)

)
‖u‖q−1

W 1,p
0 (Ω,ω1)

,

where

‖Au‖∗ = sup

{
|〈Au, ϕ〉| = |B(u, ϕ)| : ‖ϕ‖W 1,p

0 (Ω,ω1) = 1

}
is the norm in W−1,p′

0 (Ω, ω1−p′
1 ).

Consequently, Problem (1) is equivalent to the operator equa-
tion

Au = T, u ∈W 1,p
0 (Ω, ω1).

2) Coercivity of the operator A: In this step, we prove
that the operator A is coercive. To this purpose let u ∈
W 1,p

0 (Ω, ω1), we have

〈Au, u〉 = B(u, u)

=

∫
Ω

〈A(x,∇u),∇u〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇u〉ω2dx

+

∫
Ω

g(x, u)uω1dx+

∫
Ω

H(x, u,∇u)uω2dx.

Moreover, from (A4) and Theorem 2.2(with θ = 1), we obtain

〈Au, u〉 ≥ λ1

∫
Ω

|∇u|pω1dx+ λ2

∫
Ω

|∇u|qω2dx

+ λ3

∫
Ω

|u|qω2dx+ λ4

∫
Ω

|u|pω1dx

≥ min(λ1, λ4)

[∫
Ω

|∇u|pω1dx+

∫
Ω

|u|pω1dx

]
+ min(λ2, λ3)

[∫
Ω

|∇u|qω2dx+

∫
Ω

|u|qω2dx

]
= min(λ1, λ4)‖u‖p

W
1,p
0 (Ω,ω1)

+min(λ2, λ3)‖u‖q
W

1,q
0 (Ω,ω2)

≥ min(λ1, λ4)‖u‖p
W

1,p
0 (Ω,ω1)

.

Hence, we obtain

〈Au, u〉
‖u‖W 1,p

0 (Ω,ω1)

≥ min(λ1, λ4)‖u‖p−1

W 1,p
0 (Ω,ω1)

.

Therefore, since p > 1, we have

〈Au, u〉
‖u‖W 1,p

0 (Ω,ω1)

−→ +∞ as ‖u‖W 1,p
0 (Ω,ω1) −→ +∞,

that is, A is coercive.
3) Monotonicity of the operator A: The operator A is

strictly monotone. In fact, for all u1, u2 ∈ W 1,p
0 (Ω, ω1) with

u1 6= u2, we have

〈Au1 − Au2, u1 − u2〉 = B(u1, u1 − u2)− B(u2, u1 − u2)

=

∫
Ω

〈A(x,∇u1)−A(x,∇u2),∇(u1 − u2)〉ω1dx

+

∫
Ω

〈B(x, u1,∇u1)− B(x, u2,∇u2),∇(u1 − u2)〉ω2dx

+

∫
Ω

(
g(x, u1)− g(x, u2)

)(
u1 − u2

)
ω1dx

+

∫
Ω

(
H(x, u1,∇u1)−H(x, u2,∇u2)

)(
u1 − u2

)
ω2dx.

Thanks to (A3), we obtain

〈Au1 − Au2, u1 − u2〉 ≥
∫

Ω

α|∇(u1 − u2)|pω1dx

≥ α‖∇(u1 − u2)‖pLp(Ω,ω1),

and by Theorem 2.2(with θ = 1), we conclude that

〈Au1 − Au2, u1 − u2〉 ≥
α

(CpΩ + 1)
‖u1 − u2‖pW 1,p

0 (Ω,ω1)
.

Therefore, the operator A is strictly monotone.
4) Continuity of the operator A: We need to show that

the operator A is continuous. To this purpose let um −→
u in W 1,p

0 (Ω, ω1) as m −→ ∞. Note that if um −→ u in
W 1,p

0 (Ω, ω1), then um −→ u in Lp(Ω, ω1) et ∇um −→ ∇u
in (Lp(Ω, ω1))

n. Hence, thanks to Theorem 2.1, there exist
a subsequence (umk), functions Φ1 ∈ Lp(Ω, ω1) and Φ2 ∈
Lp(Ω, ω1) such that

umk(x) −→ u(x), ω1 − a.e. in Ω

|umk(x)| ≤ Φ1(x), ω1 − a.e. in Ω

∇umk(x) −→ ∇u(x), ω1 − a.e. in Ω

|∇umk(x)| ≤ Φ2(x), ω1 − a.e. in Ω.

(5)

We will show that Aum −→ Au in W−1,p′

0 (Ω, ω1−p′
1 ). In

order to prove this convergence we proceed in four steps.
Step 1:
For j = 1, ..., n, we define the operator

Fj : W 1,p
0 (Ω, ω1) −→ Lp

′
(Ω, ω1)

(Fju)(x) = Aj(x,∇u(x)).

We now show that the operator Fj is bounded and continuous.
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(i) Let u ∈W 1,p
0 (Ω, ω1). Using (A2) and Theorem 2.2(with

θ = 1), we obtain

‖Fju‖p
′

Lp′ (Ω,ω1)
=

∫
Ω

|Aj(x,∇u)|p
′
ω1dx

≤
∫

Ω

(
K1 + h1|∇u|

p
p′
)p′

ω1dx

≤ Cp
∫

Ω

(
Kp′

1 + hp
′

1 |∇u|p
)
ω1dx

≤ Cp
[
‖K1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖∇u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖K1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω1)

]
,

where the constant Cp depends only on p.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→∞. We need to
show that Fjum −→ Fju in Lp

′
(Ω, ω1). We will apply

the Lebesgue’s theorem and the convergence principle in
Banach spaces.
By (A2), we obtain

‖Fjumk − Fju‖
p′

Lp′ (Ω,ω1)

=

∫
Ω

|Fjumk(x)− Fju(x)|p
′
ω1dx

≤
∫

Ω

(|Aj(x,∇umk)|+ |Aj(x,∇u)|)p
′
ω1dx

≤ Cp
∫

Ω

(
|Aj(x,∇umk)|p

′
+ |Aj(x,∇u)|p

′
)
ω1dx

≤ Cp
∫

Ω

[(
K1 + h1|∇umk |

p
p′
)p′

+
(
K1 + h1|∇u|

p
p′
)p′]

ω1dx

≤ 2CpC
′

p

∫
Ω

(
Kp′

1 + hp
′

1 Φp2

)
ω1dx

≤ 2CpC
′

p

[
‖K1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖Φ2‖pLp(Ω,ω1)

]
.

Hence, thanks to (A1), we get, as k −→∞

Fjumk(x) = Aj(x,∇umk(x)) −→ Aj(x,∇u(x)) = Fju(x),

for almost all x ∈ Ω. Therefore, by Lebesgue’s theorem,
we obtain

‖Fjumk − Fju‖Lp′ (Ω,ω1) −→ 0,

that is,

Fjumk −→ Fju in Lp
′
(Ω, ω1).

Finally, in view to convergence principle in Banach
spaces, we have

Fjum −→ Fju in Lp
′
(Ω, ω1). (6)

Step 2:
For j = 1, ..., n, we define the operator

Gj : W 1,p
0 (Ω, ω1) −→ Lq

′
(Ω, ω2)

(Gju)(x) = Bj(x, u(x),∇u(x)).

We also have that the operator Gj is continuous and bounded.
In fact,

(i) Let u ∈ W 1,p
0 (Ω, ω1). Using (A2), Remark 3.1 and

Theorem 2.2(with θ = 1), we obtain

‖Gju‖q
′

Lq′ (Ω,ω2)
=

∫
Ω

|Bj(x, u,∇u)|q
′
ω2dx

≤
∫

Ω

(
K2 + h2|u|

q
q′ + h3|∇u|

q
q′
)q′

ω2dx

≤ Cq
∫

Ω

[
Kq′

2 + hq
′

2 |u|q + hq
′

3 |∇u|q
]
ω2dx

≤ Cq
[
‖K2‖q

′

Lq′ (Ω,ω2)
+ ‖h2‖q

′

L∞(Ω)‖u‖
q
Lq(Ω,ω2)

+‖h3‖q
′

L∞(Ω)‖∇u‖
q
Lq(Ω,ω2)

]
≤ Cq

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ ‖h2‖q

′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1)

+‖h3‖q
′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ Cqp,q

(
‖h2‖q

′

L∞(Ω)

+‖h3‖q
′

L∞(Ω)

)
‖u‖q

W 1,p
0 (Ω,ω1)

]
,

where the constant Cq depends only on q.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→ ∞. We will
show that Gjum −→ Gju in Lq

′
(Ω, ω2).

According to (A2) and Remark 3.1, we obtain

‖Gjumk −Gju‖
q′

Lq′ (Ω,ω2)
=

∫
Ω

|Gjumk(x)−Gju(x)|q
′
ω2dx

≤
∫

Ω

(
|Bj(x, umk ,∇umk |+ |Bj(x, u,∇u)|

)q′
ω2dx

≤ Cq
∫

Ω

(
|Bj(x, umk ,∇umk)|q

′
+ |Bj(x, u,∇u)|q

′
)
ω2dx

≤ Cq
[∫

Ω

(
K2 + h2|umk |

q
q′ + h3|∇umk |

q
q′
)q′

ω2dx

+

∫
Ω

(
K2 + h2|u|

q
q′ + h3|∇u|

q
q′
)q′

ω2dx

]
≤ 2CqC

′

q

∫
Ω

(
Kq′

2 + hq
′

2 Φq1 + hq
′

3 Φq2

)
ω2dx

≤ 2CqC
′

q

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ ‖h2‖q

′

L∞(Ω)‖Φ1‖qLq(Ω,ω2)

+‖h3‖q
′

L∞(Ω)‖Φ2‖qLq(Ω,ω2)

]
≤ 2CqC

′

q

[
‖K2‖q

′

Lq′ (Ω,ω2)
+ Cqp,q‖h2‖q

′

L∞(Ω)‖Φ1‖qLp(Ω,ω1)

+Cqp,q‖h3‖q
′

L∞(Ω)‖Φ2‖qLp(Ω,ω1)

]
.

Then, by (A1), we have, as k −→∞

Gjumk(x) −→ Gju(x), a.e. x ∈ Ω.

Therefore, in view to Lebesgue’s theorem, we have

‖Gjumk −Gju‖Lq′ (Ω,ω2) −→ 0,

that is,

Gjumk −→ Gju in Lq
′
(Ω, ω2).

Hence, from the convergence principle in Banach spaces,
we conclude that

Gjum −→ Gju in Lq
′
(Ω, ω2). (7)
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Step 3:
We define the operator

H : W 1,p
0 (Ω, ω1) −→ Lp

′
(Ω, ω1)

(Hu)(x) = g(x, u(x)).

In this step, we will show that the operator H is bounded and
continuous.

(i) Let u ∈W 1,p
0 (Ω, ω1). Using (A2), we obtain

‖Hu‖p
′

Lp′ (Ω,ω1)
=

∫
Ω

|g(x, u)|p
′
ω1dx

≤
∫

Ω

(
K4 + h6|u|

p
p′
)p′

ω1dx

≤ Cp
∫

Ω

(
Kp′

4 + hp
′

6 |u|p
)
ω1dx

≤ Cp
[
‖K4‖p

′

Lp′ (Ω,ω1)
+ ‖h6‖p

′

L∞(Ω)‖u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖K3‖Lp′ (Ω,ω1) + ‖h6‖p

′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω1)

]
,

where the constant Cp depends only on p.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→∞. We need to
show that Hum −→ Hu in Lp

′
(Ω, ω1).

By (A2) , we get

‖Humk −Hu‖
p′

Lp′ (Ω,ω1)

=

∫
Ω

|Humk(x)− hu(x)|p
′
ω1dx

≤
∫

Ω

(|g(x, umk)|+ |g(x, u)|)p
′
ω1dx

≤ Cp
∫

Ω

(
|g(x, umk)|p

′
+ |g(x, u)|p

′
)
ω1dx

≤ Cp
∫

Ω

[
(K4 + h6|umk |

p
p′ )p

′
+ (K4 + h6|u|

p
p′ )p

′
]
ω1dx

≤ 2CpC
′
p

∫
Ω

(
Kp′

4 + hp
′

6 Φp1

)
ω1dx

≤ 2CpC
′
p

[
‖K4‖p

′

Lp′ (Ω,ω1)
+ ‖h6‖p

′

L∞(Ω)‖Φ1‖pLp(Ω,ω1)

]
,

then, using condition (H1), we deduce, as k −→∞

Humk(x)) −→ Hu(x), a.e. x ∈ Ω.

Therefore, by the Lebesgue’s theorem, we obtain

‖Humk −Hu‖Lp′ (Ω,ω1) −→ 0,

that is,

Humk −→ Hu in Lp
′
(Ω, ω1).

We conclude, from the convergence principle in Banach
spaces, that

Hum −→ Hu in Lp
′
(Ω, ω1). (8)

Step 4:
We define the operator

H̃ : W 1,p
0 (Ω, ω1) −→ Lq

′
(Ω, ω2)

(H̃u)(x) = H(x, u(x),∇u(x)).

We now show that the operator H̃ is bounded and contin-
uous.

(i) Let u ∈ W 1,p
0 (Ω, ω1). Using (A2) and Remaek 3.1, we

obtain

‖H̃u‖q
′

Lq′ (Ω,ω2)
=

∫
Ω

|H(x, u(x),∇u(x))|p
′
ω2dx

≤
∫

Ω

(
K3 + h4|u|

q
q′ + h5|∇u|

q
q′
)q′

ω2dx

≤ Cq
∫

Ω

[
Kq′

3 + hq
′

4 |u|q + hq
′

5 |∇u|q
]
ω2dx

≤ Cq
[
‖K3‖q

′

Lq′ (Ω,ω2)
+ ‖h4‖q

′

L∞(Ω)‖u‖
q
Lq(Ω,ω2)

+ ‖h5‖q
′

L∞(Ω)‖∇u‖
q
Lq(Ω,ω2)

]
≤ Cq

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ ‖h4‖q

′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1)

+ ‖h5‖q
′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ Cqp,q

(
‖h4‖q

′

L∞(Ω)

+‖h5‖q
′

L∞(Ω)

)
‖u‖q

W 1,p
0 (Ω,ω1)

]
,

where the constant Cq depends only on q.
(ii) Let um −→ u in W 1,p

0 (Ω, ω1) as m −→∞. We need to
show that H̃um −→ H̃u in Lq

′
(Ω, ω2).

According to (A2) and Remark 3.1, we have

‖H̃umk − H̃u‖
q′

Lq′ (Ω,ω2)
=

∫
Ω

|H̃umk(x)− H̃u(x)|q
′
ω2dx

≤
∫

Ω

(
|H(x, umk ,∇umk)|+ |H(x, u,∇u)|

)q′
ω2dx

≤ Cq
∫

Ω

(
|H(x, umk ,∇umk)|q

′
+ |H(x, u,∇u)|q

′
)
ω2dx

≤ Cq
[∫

Ω

(
K3 + h4|umk |

q
q′ + h5|∇umk |

q
q′
)q′

ω2dx

+

∫
Ω

(
K3 + h4|u|

q
q′ + h5|∇u|

q
q′
)q′

ω2dx

]
≤ 2CqC

′

q

∫
Ω

(
Kq′

3 + hq
′

4 Φq1 + hq
′

5 Φq2

)
ω2dx

≤ 2CqC
′

q

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ ‖h4‖q

′

L∞(Ω)‖Φ1‖qLq(Ω,ω2)

+ ‖h5‖q
′

L∞(Ω)‖Φ2‖qLq(Ω,ω2)

]
≤ 2CqC

′

q

[
‖K3‖q

′

Lq′ (Ω,ω2)
+ Cqp,q‖h4‖q

′

L∞(Ω)‖Φ1‖qLp(Ω,ω1)

+ Cqp,q‖h5‖q
′

L∞(Ω)‖Φ2‖qLp(Ω,ω1)

]
.

Hence, from (A1), we deduce, as k −→∞

H̃umk(x) −→ H̃u(x), a.e. x ∈ Ω.

Therefore, by the the Lebesgue’s theorem, we obtain

‖H̃umk − H̃u‖Lq′ (Ω,ω2) −→ 0,

that is,

H̃umk −→ H̃u in Lq
′
(Ω, ω2).

Thanks to convergence principle in Banach spaces, we
conclude that

H̃um −→ H̃u in Lq
′
(Ω, ω2). (9)
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Finally, let ϕ ∈ W 1,p
0 (Ω, ω1) and using Hölder inequality,

Theorem 2.2(with θ = 1) and Remark 3.1, we obtain

|B1(um, ϕ)− B1(u, ϕ)|

= |
∫

Ω

〈A(x,∇um)−A(x,∇u),∇ϕ〉ω1dx|

≤
n∑
j=1

∫
Ω

|Aj(x,∇um)−Aj(x,∇u)||Djϕ|ω1dx

=
n∑
j=1

∫
Ω

|Fjum − Fju||Djϕ|ω1dx

≤
n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω1)‖Djϕ‖Lp(Ω,ω1)

≤

 n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω1)

 ‖ϕ‖W 1,p
0 (Ω,ω1),

|B2(um, ϕ)− B2(u, ϕ)|

= |
∫

Ω

〈B(x, um,∇um)− B(x, u,∇u),∇ϕ〉ω2dx|

≤
n∑
j=1

∫
Ω

|Bj(x, um,∇um)− Bj(x, u,∇u)||Djϕ|ω2dx

=
n∑
j=1

∫
Ω

|Gjum −Gju||Djϕ|ω2dx

≤

 n∑
j=1

‖Gjum −Gju‖Lq′ (Ω,ω2)

 ‖∇ϕ‖Lq(Ω,ω2)

≤ Cp,q

 n∑
j=1

‖Gjum −Gju‖Lq′ (Ω,ω2)

 ‖∇ϕ‖Lp(Ω,ω1)

≤ Cp,q

 n∑
j=1

‖Gjum −Gju‖Lq′ (Ω,ω2)

 ‖ϕ‖W 1,p
0 (Ω,ω1),

|B3(um, ϕ)− B3(u, ϕ)|

≤
∫

Ω

|g(x, um)− g(x, u)||ϕ|ω1dx

=

∫
Ω

|Hum −Hu||ϕ|ω1dx

≤ ‖Hum −Hu‖Lp′ (Ω,ω1)‖ϕ‖Lp(Ω,ω1)

≤ ‖Hum −Hu‖Lp′ (Ω,ω1)‖ϕ‖W 1,p
0 (Ω,ω1),

and

|B4(um, ϕ)− B4(u, ϕ)|

≤
∫

Ω

|H(x, um,∇um)−H(x, u,∇u)||ϕ|ω2dx

=

∫
Ω

|H̃um − H̃u||ϕ|ω2dx

≤ ‖H̃um − H̃u‖Lq′ (Ω,ω2)‖ϕ‖Lq(Ω,ω2)

≤ Cp,q‖H̃um − H̃u‖Lq′ (Ω,ω2)‖ϕ‖W 1,p
0 (Ω,ω1).

Hence, for all ϕ ∈W 1,p
0 (Ω, ω1), we have

|B(um, ϕ)− B(u, ϕ)|
≤ |B1(um, ϕ)− B1(u, ϕ)|+ |B2(um, ϕ)− B2(u, ϕ)|

+|B3(um, ϕ)− B3(u, ϕ)|+ |B4(um, ϕ)− B4(u, ϕ)|

≤
[ n∑
j=1

(
‖Fjum − Fju‖Lp′ (Ω,ω1) + Cp,q‖Gjum −Gju‖Lq′ (Ω,ω2)

)
+‖Hum −Hu‖Lp′ (Ω,ω1) + Cp,q‖H̃um − H̃u‖Lq′ (Ω,ω2)

]
‖ϕ‖W 1,p

0 (Ω,ω1).

Then, we get

‖Aum − Au‖∗

≤
n∑
j=1

(
‖Fjum − Fju‖Lp′ (Ω,ω1) + Cp,q‖Gjum −Gju‖Lq′ (Ω,ω2)

)
+‖Hum −Hu‖Lp′ (Ω,ω1) + Cp,q‖H̃um − H̃u‖Lq′ (Ω,ω2).

Combining (6), (7), (8) and (9), we deduce that

‖Aum − Au‖∗ −→ 0 as m −→∞,

that is, A is continuous.
Hence, the proof of the theorem 4.1 is completed.

V. EXAMPLE

Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and consider the
weight functions ω1(x, y) =

(
x2 + y2

)−1/2
and ω2(x, y) =(

x2 + y2
)−1/3

(
we have that ω1, ω2 ∈ A4, p = 4 and q = 3

)
,

and the functions Bj : Ω×R×R2 −→ R, Aj : Ω×R2 −→ R
(j = 1, 2), g : Ω × R× −→ R and H : Ω × R × R2 −→ R
defined by

Aj((x, y), ξ) = h1(x, y)ξ3
j ,

where h1(x, y) = 2e(x2+y2),

Bj((x, y), η, ξ) = h3(x, y)|ξj |ξj ,

where h3(x, y) = 2 + sin(x2 + y2),

g((x, y), η) = h6(x, y)|η|3sgn(η),

where h6(x, y) = 2− sin2(x+ y), and

H((x, y), η, ξ) = h5(x, y)ξ2sgn(η),

where h5(x, y) = 2− cos2(xy).
Let us consider the partial differential operator

Lu(x) = −div
[
ω1(x)A(x,∇u(x)) + ω2(x)B(x, u(x),∇u(x))

]
+ ω1(x)g(x, u(x)) + ω2(x)H(x, u(x),∇u(x)),

(10)

Therefore, by Theorem 4.1, the problem{
Lu(x, y) = cos(xy)

(x2+y2) −
∂
∂x

(
sin(xy)
(x2+y2)

)
− ∂

∂y

(
sin(xy)
(x2+y2)

)
in Ω,

u(x, y) = 0 on ∂Ω,

admits one and only solution u ∈W 1,4
0 (Ω, ω1).
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