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Abstract—In this paper, we study the existence of solutions for
the following fractional hybrid differential equations involving
Riemann-Liouville differential operators of order 1 < α ≤ 2. An
existence theorem for fractional hybrid differential equations is
proved under mixed Lipschitz and Carathéodory conditions and
using the Dhage point fixe theorem.

Index Terms—Fractional, Riemann, Hybrid

I. INTRODUCTION

During the past decades, fractional differential equations
have attracted many authors [1], [4], [5], [7], [8], [9], [10],
[11]. The differential equations involving fractional derivatives
in time, compared with those of integer order in time, are
more realistic to describe many phenomena in nature (for
instance, to describe the memory and hereditary properties of
various materials and processes), the study of such equations
has become an object of extensive study during recent years.

The quadratic perturbations of nonlinear differential equa-
tions have attracted much attention. We call such fractional
hybrid differential equations. There have been many works o
n the theory of hybrid differential equations, and we refer the
readers to the articles [2], [3], [4], [5], [6], [7].

Dhage and Lakshmikantham [3] discussed the following
first order hybrid differential equation

d

dt

[
x(t)

f(t, x(t))

]
= g(t, x(t)) a.e t ∈ J = [0, 1],

x(t0) = x0,

(1)

where f ∈ C1(J × R,R\{0}) and g ∈ Car(J × R,R).
(Car(J×R,R) is called the Carathéodory class of functions).

They established the existence, uniqueness results and some
fundamental differential inequalities for hybrid differential

equations initiating the study of theory of such systems and
proved utilizing the theory of inequalities, its existence of
extremal solutions and a comparaison results.

Zhao, Sun, Han and Li [11] have discussed the following
fractional hybrid differential equations involving Riemann-
Liouville differential operatorsDα

R

[ x(t)

f(t, x(t))

]
= g(t, x(t)) a.e t ∈ J = [0, T ],

x(0) = 0 ,
(2)

where f ∈ C1(J × R,R\{0}) and g ∈ Car(J × R,R) .
The authors of [11] established the existence theorem for

fractional hybrid differential equation and some fundamental
differential inequalities. They also established the existence of
extremal solutions.

Hilal and Kajouni [5] studied boundary fractional hybrid
differential equations involving Caputo differential operators
of order 0 < α < 1
Dα
C

[ x(t)

f(t, x(t))

]
= g(t, x(t)) a.e t ∈ J = [0, T ],

a
x(0)

f(0, x(0))
+ b

x(T )

f(T, x(T ))
= c,

(3)

where f ∈ C1(J×R,R\{0}) and g ∈ Car(J×R,R) and a, b,
c are real constants with a+ b 6= 0. They proved the existence
result for boundary fractional hybrid differential equations
under mixed Lipschitz and Carathéodory conditions. Some
fundamental fractional differential inequalities are also estab-
lished which are utilized to prove the existence of extremal
solutions. Necessary tools are considered and the comparaison
principle is proved which will be useful for further study of
qualitative behavior of solutions.
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In this paper we consider the fractional hybrid differential
equations with involving Riemann -Liouville differential op-
erators of order 1 < α ≤ 2Dα

R

[ x(t)

f(t, Bx(t))

]
= g(t, Bx(t)) a.e 0 ≤ t < 1,

x(1) = x′(1) = 0,
(4)

where f ∈ C1(J × R,R\{0}), g ∈ Car(J × R,R).
The term Bx(t) is given by: Bx(t) :=

∫ t
0
K(t, s)x(s)ds where

K ∈ C(D,R+), the set of all positive functions which are
continuous on D := {(t, s) ∈ R2/0 ≤ s ≤ t ≤ T} and

B∗ = sup
t∈[0,1]

∫ t

0

K(t, s)ds <∞ (5)

Using the fixed point theorem, we give an existence theorem
of solutions for the boundary value problem of the above
nonlinear fractional differential equation under both Lipschitz
and Carathéodory conditions. We present two examples to
illustrate our results.

II. MOTIVATION & METHODOLOGY

A. Motivation

III. PRELIMINARIES

In this section, we introduce notations, definitions, and
preliminaries facts which are used throughout this paper.
By C(J,R) we denote the Banach space of all continuous
functions from J into R with the norm

‖y‖ = sup{|y(t)|, t ∈ J} .

We denote by Car(J × R,R) the class of functions g : J ×
R −→ R such that
(i) the map t 7−→ g(t, x) is mesurable for each x ∈ R and
(ii) the map x 7−→ g(t, x) is is continuous for each∈ J .
The class Car(J × R,R) is called the Carathéodory class
of functions on J × R which are Lebesgue integrable when
bounded by a Lebesgue integrable function on J .

By L1(J,R) denote the space of Lebesgue integrable real-
valued functions on J endowed with the norm ‖ . ‖L1 defined
by

‖ y ‖L1=

∫ 1

0

| y(s) | ds.

Definition 3.1: [6]
The Riemann-Liouville fractional integral of the continuous
function h : (0,∞) −→ R of order α > 0 is defined by

Iαh(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

Provided that the right side is pointwise defined on (0,∞)
Definition 3.2: [6]

The Riemann-Liouville fractional derivative of order α > 0 of
the continuous function h : (0,∞) −→ R is given by

0D
α
Rh(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1h(s)ds, (6)

where n = [α] + 1, [α] denote the integer part of number α,
Provided that the right side is pointwise defined on (0,∞).
From the definition of the Riemann-Liouville derivative, we
can obtain the following statement

Lemma 3.1: [6]
Let α > 0 . If we assume x ∈ C(0, 1) ∩ L(0, 1), then the
fractional differential equation

RD
α
0+x(t) = 0

has x(t) = c1t
α−1+c2t

α−2+...+cnt
α−n, ci ∈ R, i = 1, ..., n,

as unique solutions, where n is the smallest integer greater than
or equal to α.

Lemma 3.2: [6]
Assume x ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of
α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+x(t) = x(t) + c1t

α−1 + c2t
α−2 + ...+ cnt

α−n

for some ci ∈ R, i = 1, 2, ..., n where n is the smallest integer
greater than or equal to α.

Lemma 3.3:
Let h ∈ C[0, 1] et 1 < α ≤ 2. The unique solution of the
problem{

Dα
(

x(t)
f(t,Bx(t))

)
= h(t) a.e 0 ≤ t < 1 ,

x(1) = x′(1) = 0,
(7)

is

x(t) = f(t, Bx(t))

∫ 1

0

H(t, s)h(s)ds , (8)

where

H(t, s) =


(t−s)α−1−tα−1(1−s)α−1

Γ(α) + s(1−t)tα−2(1−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1

−tα−1(1−s)α−1

Γ(α) + s(1−t)tα−2(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1
(9)

Preuve::
Applying the Riemann-Liouville fractional integral of the
order α for the equation (7), we obtain

x(t)

f(t, Bx(t))
= Iαh(t) + c1t

α−1 + c2t
α−2

for some c1, c2 ∈ R.
Consequently, the general solution of (7) is

x(t) = f(t, Bx(t))
( 1

Γ(α)

∫ t

0

(t−s)α−1h(s)ds+c1t
α−1+c2t

α−2
)

.

(10)
By x(1) = 0 then

c1 + c2 =
1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds.

From (10) we get

x′(t)f(t, Bx(t))− x(t)ft(t, Bx(t))

f2(t, Bx(t))
=

1

Γ(α− 1)

∫ t

0

(t−s)α−2h(s)ds+(α−1)c1t
α−2+(α−2)c2t

α−3 ,
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by x′(1) = 0 we have

(α− 1)c1 + (α− 2)c2 =
1

Γ(α− 1)

∫ 1

0

(1− s)α−2h(s)ds.

Then
c1 = 1

Γ(α−1)

∫ 1

0
((1− s)α−2 − (1− s)α−1)h(s)ds

c2 = 1
Γ(α−1)

∫ 1

0
((1− s)α−1 − (1− s)α−2)h(s)ds−

1
Γ(α)

∫ 1

0
(1− s)α−1h(s)ds

therefore

x(t) = f(t, Bx(t))
( 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+

∫ 1

0

( tα−1

Γ(α− 1)
((1− s)α−1

− (1− s)α−2)− tα−1

Γ(α)
((1− s)α−1

+
tα−2

Γ(α)
((1− s)α−2 − (1− s)α−1)

)
h(s)ds

)
= f(t, Bx(t))

(∫ t

0

( 1

Γ(α)
(t− s)α−1

+
tα−1

Γ(α− 1)
((1− s)α−1 − (1− s)α−2)

− tα−1

Γ(α)
(1− s)α−1

+
tα−2

Γ(α− 1)
((1− s)α−2 − (1− s)α−1)

)
h(s)ds

+

∫ 1

t

( tα−1

Γ(α− 1)
((1− s)α−1 − (1− s)α−2)

− tα−1

Γ(α)
(1− s)α−1

+
tα−2

Γ(α− 1)
((1− s)α−2 − (1− s)α−1)

)
h(s)ds

)
= f(t, Bx(t))

(∫ t

0

( (t− s)α−1

Γ(α)

+
s(1− t)tα−2(1− s)α−2

Γ(α− 1)

− tα−1(1− s)α−1

Γ(α)

)
h(s)ds

+

∫ 1

t

(s(1− t)tα−2(1− s)α−2

Γ(α− 1)

− tα−1(1− s)α−1

Γ(α)

)
h(s)ds

)
= f(t, Bx(t))

∫ 1

0

H(t, s)h(s)ds ,

The proof is complete.
Lemma 3.4:

The function H(t, s) defined by (9) satisfies the following
conditions

Γ(α− 1)H(t, s) ≤ q(t)k(s) , (11)

where q(t) = (1 − t)tα−2 and k(s) = s(1 −
s)α−2 .

IV. EXISTENCE RESULT

In this section, we prove the existence results for the hybrid
differential equations with fractional order (4) on the closed
and bounded interval J = [0, 1] under mixed Lipschitz and
Carathéodory conditions on the nonlinearities involved in it.
We defined the multiplication in X by (xy)(t) = x(t)y(t) for
x, y ∈ X .
Clearly X = C(J,R) is a Banach algebra with respect to
above norm and multiplication in it.

Lemma 4.1: [2]
Let S be a non-empty, closed convex and bounded subset of
the Banach algebra X and let A1 : X −→ X and A2 : X −→
X be two operators such that

(a) A1 is Lipschitzian with a Lipschitz constant L
(b) B is completely continuous,
(c) x = A1xA2y =⇒ x ∈ S for all y ∈ S , and
(d) LM < 1 , where M = ‖A2(S)‖ = sup{‖A2(x)‖ : x ∈

S}
then the operator equation x = A1xA2y has a solution in S
We make the following assumptions
(H0) The function x 7−→ x

f(t,Bx) is increasing in R almost
every where for t ∈ J .
(H1) There exists a constant L > 0 such that

| f(t, Bx)− f(t, By) |≤ LB∗|x− y| = L∗|x− y| ,

for all t ∈ J and x, y ∈ R with L∗ = LB∗.
(H2) There exists a function h ∈ L1(J,R+) such that

|g(t, Bx)| ≤ B∗h(t) a.e t ∈ J ,

for all x ∈ R .
For convenience we denote

T =
1

Γ(α− 1)

∫ 1

0

k(s)ds . (12)

Theorem 4.1: Assume that hypotheses (H1) and (H2)
hold. Further, if

L∗B∗T‖h‖L1 < 1, (13)

then the boundary value problem (4) has a solution define J .
Preuve::

We define a subset S of X by

S = {x ∈ X/‖x‖ ≤ N} ,

where

N =
B∗F0T‖h‖L1

1−B∗L∗T‖h‖L1

,

et
F0 = sup

t∈J
|f(t, 0)| .
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It is clear that S satisfies hypothesis of lemma 4.1.
By application of Lemma 4.1, the equation (4) is equivalent
to the nonlinear hybrid integral equation

x(t) = f(t, Bx(t))

∫ 1

0

H(t, s)g(s,Bx(s))ds , t ∈ J.
(14)

Define two operators A1 : X −→ X and A2 : S −→ X by

A1x(t) = f(t, Bx(t)), t ∈ J (15)

and

A2x(t) =

∫ 1

0

H(t, s)g(s,Bx(s))ds . (16)

Then the hybrid integral equation (14) is transformed into the
operator equation as

x(t) = A1x(t)A2x(t) , t ∈ J . (17)

We shall show that the operators A1 and A2 satisfy all the
conditions of Lemma 4.1.
Claim 1, Let x, y ∈ X then by hypothesis (H1),

|A1x(t)−A1y(t)| = |f(t, Bx(t))− f(t, By(t))|

≤ L∗|x(t)− y(t)|

≤ L∗‖x− y‖ ,

for all t ∈ J .
Taking supremum over t, we obtain t

‖A1x−A1y‖ ≤ L∗‖x− y‖ ,

for all x, y ∈ X .
Claim 2, A2 is a continuous in S.
Let (xn) be a sequence in S converging to a point x ∈ S .
and Lebesgue dominated convergence theorem, we have

lim
n→∞

A2xn(t) = lim
n→∞

∫ 1

0

H(t, s)g(s,Bxn(s))ds

=

∫ 1

0

H(t, s) lim
n→∞

g(s,Bxn(s))ds

=

∫ 1

0

H(t, s)g(s,Bx(s))ds

= A2x(t) ,

for all t ∈ J .
This shows that A2 is a continuous operator on S.
Claim 3, A2 is compact operator on S .
First, we show that A2(S) is a uniformly bounded set in X .
Let x ∈ S be arbitrary. By Lemma 3.4, we have

|A2x(t)| = |
∫ 1

0

H(t, s)g(s,Bx(s))ds|

≤ q(t)
1

Γ(α− 1)
B∗
∫ 1

0

k(s)h(s)ds

≤ TB∗‖h‖L1 ,

for all t ∈ J .
Takin to sup from t, we obtain

‖A2x‖ ≤ TB∗‖h‖L1 ,

for all x ∈ S.
so A2 is uniformly bounded on S.
Next, we prove that A2(S) is an equi-continuous set on X .
Given ε > 0 and let

δ < min
{1

2
,

Γ(α+ 1)ε

12‖h‖L1

}
Let x ∈ S et t1, t2 ∈ [0, 1] with t1 < t2 , 0 <

t2 − t1 < δ .
We have

|A2x(t2)−A2x(t1)| =
∣∣∣ ∫ 1

0

H(t2, s)g(s,Bx(s))ds

−
∫ 1

0

H(t1, s)g(s,Bx(s))ds
∣∣∣

≤ B∗‖h‖L1

∣∣∣ ∫ t2

0

(t2 − s)α−1 − tα−1
2 (1− s)α−1

Γ(α)
ds

+

∫ t2

0

s(1− t2)tα−2
2 (1− s)α−2

Γ(α− 1)
ds

−
∫ 1

t2

tα−1
2 (1− s)α−1

Γ(α)
ds

+

∫ 1

t2

s(1− t2)tα−2
2 (1− s)α−2

Γ(α− 1)
ds

−
∫ t1

0

(t1 − s)α−1 − tα−1
1 (1− s)α−1

Γ(α)
ds

−
∫ t1

0

s(1− t1)tα−2
1 (1− s)α−2

Γ(α− 1)
ds

+

∫ 1

t1

tα−1
1 (1− s)α−1

Γ(α)
ds

−
∫ 1

t1

s(1− t1)tα−2
1 (1− s)α−2

Γ(α− 1)
ds
∣∣∣

then

|A2x(t2)−A2x(t1)| ≤

B∗‖h‖L1

(∫ t2

0

(t2 − s)α−1

Γ(α)
ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
ds+ (tα−1

2 − tα−1
1 )

∫ 1

0

(1− s)α−1

Γ(α)
ds

+(tα−2
2 − tα−2

1 )

∫ 1

0

(1− s)α−2

Γ(α− 1)
ds

+(tα−1
2 − tα−1

1 )

∫ 1

0

(1− s)α−2

Γ(α− 1)
ds
)
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≤ B∗‖h‖L1

( tα2 − tα1 + tα−1
2 − tα−1

1

Γ(α+ 1)

+
tα−2
2 − tα−2

1

Γ(α)
+
tα−1
2 − tα−1

1

Γ(α)

)
≤ B∗‖h‖L1

Γ(α+ 1)

(
tα2 − tα1 + (1 + α)(tα−1

2

−tα−1
1 ) + α(tα−2

2 − tα−2
1 )

)
≤ B∗‖h‖L1

Γ(α+ 1)

(
tα2 − tα1

+3(tα−1
2 − tα−1

1 ) + 2(tα−2
2 − tα−2

1 )
)
.

In order to estimate tα2 − tα1 , tα−1
2 − tα−1

1 and
tα−2
2 − tα−2

1 ,
we consider the following cases
Case 1: 0 ≤ t1 < δ , t2 < 2δ.
tα2 − tα1 ≤ tα2 < (2δ)α ≤ 2αδ ≤ 4δ,
tα−1
2 − tα−1

1 ≤ tα−1
2 < (2δ)α−1 ≤ 2α−1δ ≤ 2δ

tα−2
2 − tα−2

1 ≤ tα−2
2 < (2δ)α−2 ≤ 2αδ ≤ δ

Case 2: 0 < t1 < t2 ≤ δ.
tα2 − tα1 ≤ tα2 < δα ≤ αδ ≤ 4δ, tα−1

2 − tα−1
1 ≤ tα−1

2 <
δα−1 ≤ (α− 1)δ ≤ 2δ
tα−2
2 − tα−2

1 ≤ tα−2
2 < δα−2 ≤ (α− 2)δ ≤ δ

Case 3: δ ≤ t1 < t2 ≤ 1.
tα2 − tα1 ≤ αδ ≤ 4δ, tα−1

2 − tα−1
1 ≤ (α− 1)δ < 2δ

tα−2
2 − tα−2

1 ≤ (α− 2)δ < δ

we obtain
|A2x(t2)−A2x(t1)| < ε ,

for all t1, t2 ∈ J and all x ∈ X .
This implies that A2(S) is an equi-continuous set in X .
Then by Arzelà-Ascoli theorem, A2 is a continuous and
compact operator on S.
Claim 4, The hypothesis (c) of lemma 4.1 is satisfied.
Let x, y ∈ X such that x = A1xA2y. Then

|x(t)| = |A1x(t)||A2y(t)|
= |f(t, Bx(t))− f(t, 0)

+ f(t, 0)||
∫ 1

0

H(t, s)g(s,Bx(s))ds|

≤ B∗[L∗|x(t)|+ F0]
(
q(t)

1

Γ(α− 1)

∫ 1

0

k(s)h(s)ds
)

≤ B∗[L∗|x(t)|+ F0]T‖h‖L1 .

Thus,

|x(t)| ≤ B∗F0T‖h‖L1

1−B∗L∗T‖h‖L1

,

Taking supremum over t,

‖x‖ ≤ B∗F0T‖h‖L1

1−B∗L∗T‖h‖L1

.

Then x ∈ S and the hypothesis (c) of Lemma 4.1 is satisfied.
Finally, we have
M = ‖A2(S)‖ = sup{‖A2x‖ : x ∈ S} ≤ B∗T‖h‖L1 ,
so,

L∗M ≤ L∗B∗T‖h‖L1 < 1 .

Thus, all the conditions of Lemma 4.1 are satisfied.
Hence the operator equation A1xA2x = x has a solution in
S. As a result, the boundary value problem (4) has a solution
defined on J . This completes the proof.

V. EXEMPLES

In this section, we will present two examples to illustrate
the main results.

A. Exemple 1

we consider the fractional hybrid differential equation{
D

3
2x(t) = sinx p.p. 0 ≤ t < 1 ,

x(1) = x′(1) = 0 ,
(18)

whetre f(t, x) = 1 , g(t, x) = sinx and h(t) = 1 .
Then hypothesis (H1) and (H2) hold.
Since

T =
1

Γ(α− 1)

∫ 1

0

k(s)ds

=
1

Γ( 1
2 )

∫ 1

0

s(1− s) 1
2 ds

=
4

35
√
π

,

choosing L = 1, then we have

LT‖h‖L1 < 1 .

Therefore, the fractional hybrid differential equation (18) has
a solution.

B. Exemple 2

we consider the fractional hybrid differential equation{
D

3
2

[
x(t)

sin x+2

]
= cosx p.p. 0 ≤ t < 1

x(1) = x′(1) = 0
(19)

where f(t, x) = sinx + 2 , g(t, x) = cosx et
h(t) = 1.
Then hypothesis (H1) and (H2) hold.
Since

T =
4

35
√
π

.

choosing L = 1, then

LT‖h‖L1 < 1 .

Therefore, the fractional hybrid differential equation (19) has
a solution on [0, 1].
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