Existance results for a neutral functionnal integrodifferential inclusion with finite delay

Khalid HILAL *, Ahmed KAJOUNI * & Hamid LMOU *

* Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, B.P523, Beni Mellal, Morocco, Email: hilalkhalid2005.@yahoo.fr, {kajjouni, lmou.hamid}@yahoo.fr

Abstract— This paper is mainly concerned with existence of mild solution for a neutral functionnal integrodiferential inclusion with finit delay. The results are bobtained by using a fixed point theoreme for condensing multivalued maps.

Index Terms—integrodifferentional inclusion, Selection, Fixed point theory, neutral functional differential and integrodifferential inclusion, convex multivalued map.

I. INTRODUCTION:

In this paper we prove the existence of mild solution, for a neutral functional integrodifferentional inclusion with finite delay. In section 2 we will recall briefly some basic definitions and preliminary facts which will be used in the following section. Section 3 deals with the existence of mild solution for a neutral functional integrodifferentional inclusion with finite delay of the forme :

$$\begin{cases} \frac{d}{dt}\mathcal{F}(t,u_t) \in A\mathcal{F}(t,u_t) + \int_0^t B(t-s)\mathcal{F}(s,u_s)ds \\ +G(t,u_t) & \text{for} \quad t \in [0,b] \\ u_0 = \varphi(\theta) & \text{for} \quad \theta \in J_0 = [-r,0], \end{cases}$$
(1)

where $(A, \mathcal{D}(A))$ is the infinitesimal generator of a compact resolvant operator R(t), $t \geq 0$, in Banach space X, for $t \geq 0$ B(t) is a closed linear operator with domain $\mathcal{D}(B)$, such that $\mathcal{D}(A) \subset \mathcal{D}(B)$. $G: J \times \mathcal{C}(J_0, X) \longrightarrow 2^X$ $(J_0 = [-r, 0])$, is a bounded, closed, convex, multivalued map and X a real Banach space.

For any continus function u defined on $J_1 = [-r, b]$, and any $t \in J$, we denot by u_t the element of $\mathcal{C}(J_0, X)$ defined by:

$$u_t(\theta) = u(t+\theta) = \varphi(\theta), \quad \theta \in J_0 = [-r, 0],$$

Here $u_t(.)$ represents the history of the state from time t-r, up to the present time t, and $\mathcal{F}: J \times \mathcal{C}(J_0, X) \longrightarrow X$ defined by :

$$\mathcal{F}(t,\varphi) = \varphi(0) - F(t,\varphi) = u(t) - F(t,u_t), \quad \forall (t,\varphi) \in J \times \mathcal{C}(J_0,X),$$

Where $F: J \times \mathcal{C}(J_0, X) \longrightarrow X$.

Wen B = 0 we refer to the paper of K.HILAL and K.EZZINBI [1] and the paper of K.EZZINBI and X.FU [2].

This paper is motivated by the recents results of [1] and BENCHOHRA [3]. Here we compose the above results and

prove the existence of mild solution for our probleme (1), relying on a fixed point theorem for condensing maps due to Martelli [4].

II. PRELIMINARIES:

In this section, we introduce some basic definitions, notations, and lemmas that are used throughout this paper.

 $\mathcal{C}(J, X)$ is the Banach space of continuous functions from J into X with the norm :

$$||u||_{\infty} := \sup\{|u(t)|; t \in J\}$$

A measurable function $u: J \longrightarrow X$ is Bochner integrable if and only if |u| is Lebesgue integrable (For properties of the Bochner integral see Yosida [5]).

 $L^1(J, X)$ denotes the Banach space of continuous functions $u: J \longrightarrow X$ which are Bochner integrable normed by :

$$|u||_{L^1} := \int_0^T |u(t)| dt$$
 for all $u \in L^1(J, X)$

Lemma 2.1: :

Let $(X, \|.\|)$ be a Banach space. A multivalued map $G : X \longrightarrow 2^X$ is convex closed, if G(x) is convex closed, for all $x \in X$; and G is bounded on bounded sets, if $G(B) = \bigcup_{x \in B} G(x)$ is bounded in X, for any bounded set B of X.

Theorem 2.1: :

G is said to be completely continuous if G(B) is relatively compact, for every bounded subset $B \subset X$.

Theorem 2.2: :

G is called upper semi-continuous (u.s.c) on X, if for each $x \in X$, the set G(x) is a nonempty, closed subset of X, and if for each open set B of X containing G(x), there exists an open neighborhood V of x such that $G(V) \in B$.

Lemma 2.2: :

If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph (i.e $x_n \rightarrow x, y_n \rightarrow y; y_n \in G(x_n)$ imply

$$y \in G(x)$$
).

Definition 2.1: :

an upper semi-continuous multivalued map $G: X \longrightarrow X$ is said to be condensing if for any subset $B \subset X$ with $\alpha(B) \neq 0$, we have $\alpha(G(B)) < \alpha(B)$, where α denotes the Kuratowski measure of noncompactness [6].

Lemma 2.3: :

IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa Copyright ©2021 by International Journal on Optimization and Applications

A completely continuous multivalued map is a condensing map

Theorem 2.3: :(Arzela–Ascoli's theorem)

Let K be a compact space and (E, d) a metric space. $A \subset \mathcal{C}(K, E)$ is relatively compact (i.e. included in a compact) if and only if, for any x of K:

- A is equicontinuous in x, i.e. for everything $\varepsilon > 0$, there exist a neighborhood V of x such that : $\forall f \in A, \forall y \in$ $V \quad d(f(x), f(y)) < \varepsilon$
- The set $A(x) = \{f(x); f \in A\}$ is relatively compact.

In the following $\mathcal{BCC}(X)$ denotes the set of all nonempty bounded, closed and convex subsets of X

Theorem 2.4: :(Leray-schauder's fixed point)

Let X be a Banach space and $N: X \longrightarrow \mathcal{BCC}(X)$ an u.s.c condensing map. If the set :

 $\Omega := \{ u \in X : \lambda u \in Nu \}$ for $\lambda > 1$ } is bounded, then N has a fixed point.

Definition 2.2: :(Finite delay differential equation)

of continuous functions,

$$\varphi : [-r, 0] \longrightarrow \mathbb{R}^n$$
 with $\|\varphi\|_{\infty} = \sup_{\theta \in [-r, 0]} \|\varphi(\theta)\|$. We denot (F

by u_t element of C_r defined by :

 $u_t(\theta) = u(t+\theta) = \varphi(\theta), \quad \theta \in J_0 = [-r, 0],$ Let $f : \mathbb{R}^+ \times \mathcal{C}_r \longrightarrow \mathbb{R}$, a general form of the finit-delay differential equation is :

$$\frac{d}{dt}u(t) = f(t, u_t)$$

Definition 2.3: (Resolvent operator [2])

A family of bounded linear operators $R(t) \in B(X)$, (B(X)) is the Banach space of all linear bounded operator from X into X), for $t \in J$ is called a resolvent operator for :

 $\frac{du}{dt} = Au(t) + \int_0^t f(t-s)u(t)ds$

If:

- 1- R(0) = I, the identity operator on X, and $||R(t)|| \leq M$ with M > 1.
- 2- For all $u \in X$; R(t)u is continuous for $t \in J$
- 3- $R(t) \in B(Y)$; $t \in J$; where Y is the Banach space (H6)- The function F is completly continuous and for any formed from $\mathcal{D}(A)$, for $y \in Y, R(.)y \in \mathcal{C}^1(J, X) \cap$ $\mathcal{C}(J,Y)$ and :

$$\begin{aligned} R^{'}(t)y &= AR(t)y + \int_{0}^{t} f(t-s)R(s)yds = \\ R(t)Ay + \int_{0}^{t} R(t-s)f(s)yds. \end{aligned}$$

III. EXISTANCE RESULTS :

In order to define the concept of mild solution for (1), by comparaison with the evolution problem

$$\frac{dv}{dt} = Av(t) + \int_0^t f(t-s)v(t)ds + h(t) \quad ; \quad v(0) = a$$

We associate (1) to the integral equation :

$$u(t) = R(t)\mathcal{F}(0, \varphi) + F(t, u_t) + \int_0^t R(t-s)g(s)ds \quad t \in [0, b]$$

Where $g \in \mathcal{S}_{_{G,u}} = \{g \in L^1(J,X) : g(t) \in G(t,u_t); t \in$ J

Definition 3.1: :

A function $u \in \mathcal{C}([-r, b], X)$ is called a mild solution of (1) if :

1- $u(0) = \varphi(\theta); \quad \theta \in [-r, 0].$

2- There exist a function
$$g \in S_{G,u}$$
 such that :
 $u(t) =$

$$R(t)\mathcal{F}(0, \varphi) + F(t, u_t) + \int_0^t R(t-s)g(s)ds \quad t \in [0, b]$$

Where, $\mathcal{F}(0, \varphi) = \varphi(\theta) - F(t, \varphi)$
Assume that :

Assume that :

(H1)- A is the infinitesimal generator of a compact resolvent operator R(t) in X such that :

$$||R(t)|| \le M_1 \quad for \quad some \quad M_1 \ge 1 \quad ; \quad t \in J$$

(H2)- There exists constants
$$0 \le c_1 < 1$$
 and $c_2 \ge 0$ such that $|F(t,u)| \le c_1 ||u|| + c_2; \quad t \in J \quad u \in \mathcal{C}(J_0, X)$

Let r > 0; and $C_r = C([-r, 0], \mathbb{R}^n)$, the Banach space (H3)- $\varphi \in C([-r, 0], X)$ is completely continuous and there exists a constant M_2 such that:

$$\|\varphi\| \le M$$

H4)- $G : J \times \mathcal{C}(J_0, X) \longrightarrow \mathcal{BCC}(X) ; (t, u) \longrightarrow G(t, u)$ is measurable with respect to t for each $u \in \mathcal{C}(J_0, X)$, u.s.c with respect to u for each $t \in J$; and for each fixed $u \in \mathcal{C}(J_0, X)$ the set :

$$\mathcal{S}_{G,u} = \{g \in L^1(J, X) : g(t) \in G(t, u_t); \quad t \in J\}$$

is nonempty.

(H5)- $||G(t,u)|| := \sup\{|g| : g \in G(t,u)\} \le p(t)\Psi(||u||)$ for all $t \in J$ and all $u \in \mathcal{C}(J_0, X)$, where $p \in L^1(J, \mathbb{R}^+)$ and $\Psi : \mathbb{R}^+ \longrightarrow [0, +\infty)$ is continuous and increasing with :

$$\int_{0}^{b} \omega(s)ds < \int_{c}^{\infty} \frac{d\tau}{\tau + \Psi(\tau)}$$

Where
$$c = \frac{1}{1 - c_{1}} \{ M_{1} (M_{2}(1 + c_{1}) + c_{2}) + c_{2} \} \quad and \quad \omega(s) = \frac{1}{1 - M_{1}p(t)} \}$$

 $1 - c_1$ bounded set $B \subseteq \mathcal{C}(J_1, X)$ the set $\{t \longrightarrow F(t, u_t) :$ $u \in B$ is equicontinuous in C.

The following lemma is crucial in the proof of our existence results.

Lemma 3.1: :

Г

Let I be a compact real interval and X be a Banach space. Let G be a multivalued map satisfying (H4). And let Γ be a linear continuous mapping from $L^1(I, X)$ to $\mathcal{C}(J, X)$. Then the operator :

$$\overset{\frown}{\mathcal{S}}_{G} : \mathcal{C}(I, X) \longrightarrow \mathcal{BCC}\big(\mathcal{C}(I, X)\big); \quad u \longrightarrow \\ (\Gamma \circ \mathcal{S}_{G})(u) = \Gamma\big(\mathcal{S}_{G}\big)$$

Is closed graph operator in $\mathcal{C}(I, X) \times \mathcal{C}(I, X)$

Our main result may be presented as the following theorem.

Theorem 3.1: :

Assume that hypotheses (H1) - (H6) hold, then the problem (1) has at least one mild solution on J_1 .

IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa Copyright ©2021 by International Journal on Optimization and Applications

Proof 3.1: :

Let $\mathbf{C} := \mathcal{C}(J_1, X)$ be the Banach space of continuous function from J_1 into X endowed with the sup-norm :

 $\|u\|_{\infty} := \sup\{|u| : t \in [-r, b]\}; for \quad u \in \mathbf{C}$

Transform the problem into a fixed point problem. Consider the multivalued map, $\mathcal{N}: \mathbf{C} \longrightarrow 2^{\mathbf{C}}$ defined by :

$$\begin{split} \mathcal{N}u &:= \left\{ h \in \mathbf{C} : \\ h(t) &= \left\{ \begin{aligned} \varphi(t); t \in J_0 \\ R(t)\mathcal{F}(0, \ \varphi) + F(t, \ u_t) \\ + \int_0^t R(t-s)g(s)\mathrm{d}s; t \in J \end{aligned} \right\} \\ \end{split}$$
 Where $: g \in \mathcal{S}_{G,u} = \{g \in L^1(J,X) : g(t) \in G(t, u_t); t \in J\} \end{split}$

We have that the fixed points of N are mild solutions to (1). Now we shall prove that \mathcal{N} is a completely continuous multivalued map, u.s.c, with convex closed values. The proof will be given in several steps.

Step 1 : $\mathcal{N}u$ is convex for each $u \in \mathbb{C}$. Indeed, if h_1, h_2 belong to $\mathcal{N}u$, then there exist $g_1, g_2 \in \mathcal{S}_{G,u}$ such that for each $t \in J$ we have:

$$h_1(t) = R(t)\mathcal{F}(0, \varphi) + F(t, u_t) + \int_0^t R(t-s)g_1(s)ds$$

and

$$h_2(t) = R(t)\mathcal{F}(0, \varphi) + F(t, u_t) + \int_0^t R(t-s)g_2(s)\mathrm{d}s$$

Let $0 \le k \le 1$. Then for each $t \in J$ we have :

$$\binom{kh_1 + (1-k)h_2}{t} = R(t)\mathcal{F}(0, \varphi) + F(t, u_t) + \int_0^t R(t-s) \binom{kg_1(s) + (1-k)g_2(s)}{ds} ds$$

Thus $kh_1 + (1-k)h_2 \in \mathcal{N}u$ (because $\mathcal{S}_{G,u}$ is convex), then $\mathcal{N}u$ is convex for each $u \in \mathbf{C}$

Step 2: We will prove that \mathcal{N} is a completely continuous operator. Using (H6) it suffices to show that the operator

$$\mathcal{N}_{1}: \mathbf{C} \longrightarrow 2^{\mathbf{C}} \text{ defined by} : \mathcal{N}_{1}u := \left\{ \begin{array}{l} h_{1} \in \mathbf{C} : \\ \\ h_{1}(t) = \left\{ \begin{array}{l} \varphi(t); t \in J_{0} \\ R(t)\mathcal{F}(0, \varphi) \\ + \int_{0}^{t} R(t-s)g(s)\mathrm{d}s; t \in J \end{array} \right\}$$

is completly continuous .

i- \mathcal{N}_1 map bounded set into bounded set in **C** :

Indeed, it is enough to show that there exists a positive constant l such that for each $h_1 \in \mathcal{N}_1 u$; $u \in \mathbf{B}_q = \{u \in \mathbf{C} : ||u||_{\infty} \le q\}$ we have $||h_1||_{\infty} \le l$.

If $h_1 \in \mathcal{N}_1 u$ then there exist $g \in \mathcal{S}_{G,u}$, such that for every $t \in J$ we have :

$$h_1(t) = R(t)\mathcal{F}(0, \varphi) + \int_0^t R(t-s)g(s)\mathrm{d}s$$

By (H1) - (H3), and (H5) we have for each $t \in J$:

$$|h_{1}(t)| \leq ||R(t)\mathcal{F}(0, \varphi)|| + \int_{0}^{t} ||R(t-s)g(s)|| ds$$

$$\leq M_{1}[c_{1}M_{2} + c_{2}]$$

$$+ M_{1} \sup_{u \in [0,q]} \Psi(u) \Big(\int_{0}^{t} p(s) ds \Big)$$

Then for each $h \in \mathcal{N}_1(B_q)$:

$$\|h_1(t)\|_{\infty} \le M_1[c_1M_2 + c_2] \\ + M_1 \sup_{u \in [0,q]} \Psi(u) \left(\int_0^b p(s) \mathrm{d}s \right)$$

Then \mathcal{N}_1 is bounded.

ii- \mathcal{N}_1 maps bounded set into equicontinuous sets of C:

Let $\tau_1, \tau_2 \in J$; $\tau_1 < \tau_2$, and B_q be bounded set of C; for each $u \in B_q$ and $h_1 \in \mathcal{N}_1 u$; there exist $g \in \mathcal{S}_{G,u}$ such that :

$$h_1(t) = R(t)\mathcal{F}(0, \varphi) + \int_0^t R(t-s)g(s)\mathrm{d}s; \quad t \in J$$

Thus,

$$h_{1}(\tau_{2}) - h_{1}(\tau_{1}) = R(\tau_{2})\mathcal{F}(0, \varphi) \\ + \int_{0}^{\tau_{2}} R(\tau_{2} - s)g(s)ds - R(\tau_{1})\mathcal{F}(0, \varphi) \\ - \int_{0}^{\tau_{1}} R(\tau_{1} - s)g(s)ds \\ = \left(R(\tau_{2}) - R(\tau_{1})\right)\mathcal{F}(0, \varphi) \\ + \int_{0}^{\tau_{1}} \left(R(\tau_{2} - s) - R(\tau_{1} - s)\right)g(s)ds \\ + \int_{\tau_{1}}^{\tau_{2}} R(\tau_{2} - s)g(s)ds$$

Then

$$\begin{aligned} \|h_1(\tau_2) - h_1(\tau_1)\| &\leq \|R(\tau_2) - R(\tau_1)\| \\ &+ \int_0^{\tau_1} \|R(\tau_2 - s) \\ &- R(\tau_1 - s)\| \|g(s)\| ds \\ &+ \int_{\tau_1}^{\tau_2} \|R(\tau_2 - s)\| \|g(s)\| ds \end{aligned}$$

As $\tau_2 \longrightarrow \tau_1$ the right-hand side of the above inequality tends to zero, implies that $\mathcal{N}_1 u$ is equicontinuous on J_1

iii- $V(t) = \{h_1(t); h_1 \in \mathcal{N}_1(B_q)\}$ is relatively compact on X:

By (H4) V(t) is relatively compact for t = 0; let $0 \le t \le b$ be fixed and let ε be a real number satisfying $0 \le \varepsilon < t$ for $u \in B_q$ and $g \in S_{G,u}$ such that :

$$h_1(t) = R(t)\mathcal{F}(0, \varphi) + \int_0^t R(t-s)g(s)\mathrm{d}s; \quad t \in J$$

IJOA ©2021

and,

$$h_{1,\varepsilon}(t) = R(t)\mathcal{F}(0, \varphi) + \int_0^{t-\varepsilon} R(t-s)g(s)\mathrm{d}s; \quad t \in J$$

The set $V_{\varepsilon}(t) = \{h_{1,\varepsilon}(t); h_{1,\varepsilon} \in \mathcal{N}_1(B_q)\}$ is relatively compact because R(t) is compact then;

$$\begin{aligned} \|h_1(t) - h_{1,\varepsilon}(t)\| &= \int_{t-\varepsilon}^t R(t-s)g(s)\| \\ &\leq M_1 \sup_{u \in [0,q]} \Psi(u) \int_0^t p(s) \mathrm{d}s.\varepsilon \\ &\leq r\varepsilon \end{aligned}$$

With; $r = M_1 \sup_{u \in [0,q]} \Psi(u) \int_0^b p(s) ds$, this implies that V(t) is relativement compact thus by (i), (ii), (iii) and by

V(t) is relativement compact thus by (i), (ii), (iii) and by Arzela-Ascoli theorem, we can deduce that \mathcal{N}_1 is completely continuous then $\mathcal{N} : \mathbf{C} \longrightarrow 2^{\mathbf{C}}$ is completely continuous.

Step 3 : \mathcal{N} has a closed graph. Let $u_n \longrightarrow u$, $h_n \in \mathcal{N}u_n$ and $h_n \longrightarrow h$, we shall prove that $h \in \mathcal{N}u$.

 $h_n \in \mathcal{N}u_n$ then there exists $g_n \in \mathcal{S}_{{}_{G,u_n}}$ such that

$$h_n(t) = R(t)\mathcal{F}(0, \varphi) + F(t, u_{nt})$$

+
$$\int_0^t R(t-s)g_n(s)ds; \quad t \in J$$

We should prove that $g\in \mathcal{S}_{\scriptscriptstyle G,u}$ such that for each $t\in J$

$$h(t) = R(t)\mathcal{F}(0, \varphi) + F(t, u_t)$$

+
$$\int_0^t R(t-s)g(s)ds; \quad t \in J$$

Since F is continuous, we have that:

$$\| \left(h_n(t) - R(t)\mathcal{F}(0, \varphi) - F(t, u_{nt}) \right) - \left(h(t) - R(t)\mathcal{F}(0, \varphi) - F(t, u_t) \right) \|_{\infty} \longrightarrow 0$$

As $n \longrightarrow \infty$.

:

Consider the linear operator :

$$\Gamma : \mathbf{L}^1(J, X) \longrightarrow \mathcal{C}(J, X)$$
$$g \longrightarrow \Gamma(g)(t) = \int_0^t R(t - s)g(s)ds$$

From Lemma 3.1; $\Gamma \circ \mathcal{S}_{_G}$ is a closed graph operator then we have that :

$$h_n(t) - R(t)\mathcal{F}(0, \varphi) - F(t, u_{nt}) \in \Gamma\left(\mathcal{S}_{G, u_n}\right)$$

Since $u_n \longrightarrow u$, and by the lemma 3.1 :

$$h(t) - R(t)\mathcal{F}(0, \varphi) - F(t, u_t) \in \Gamma\left(\mathcal{S}_{G, u}\right)$$

It follows that $g \in \mathcal{S}_{G,u}$ such that

$$h(t) = R(t)\mathcal{F}(0, \ \varphi) + F(t, u_t)$$
$$+ \int_0^t R(t-s)g(s)\mathrm{d}s; t \in J$$

From the Step 1, step 2 and step 3 we deduce that \mathcal{N} is u.s.c, completely continuous then by lemma (2.3), \mathcal{N} is a condensing, bounded, closed and convex operator. In order to prove that \mathcal{N} has a fixed point, we need one more step.

Step 4 : The set $\Omega := \{ u \in X : \lambda u \in \mathcal{N}u \text{ for } \lambda > 1 \}$ is bounded. Let $u \in \Omega$. Then $\lambda u \in \mathcal{N}u$, thus there exists $g \in \mathcal{S}_{G,u}$ such that :

$$u(t) = \lambda^{-1} R(t) \mathcal{F}(0, \ \varphi) + \lambda^{-1} F(t, u_t)$$
$$+ \lambda^{-1} \int_0^t R(t-s) g(s) \mathrm{d}s$$

By $(H_1) - (H_3)$ and (H_5) we have :

$$|u(t)| \le M_1 \left((1+c_1)M_2 + c_2 \right) + c_1 ||u_t|| + c_2$$
$$+ M_1 \int_0^t p(s) \Psi(||u_s||) ds$$

Consider the function defined by :

$$\mu(t)=\sup\{|u(s)|:-r\leq s\leq t\}; 0\leq t\leq b$$

Let $t^* \in [-r, t]$ be such that $\mu(t) = |u(t^*)|$. \star If $t^* \in J_0 = [-r, 0]$ then :

$$\mu(t) \le \|\phi\| \le M_2$$

** If
$$t^* \in J = [0, b]$$
 then :

$$\mu(t) \le M_1 \left((1 + c_1)M_2 + c_2 \right) + c_1 \mu(t) + c_2 + M_1 \int_0^t p(s) \Psi(\mu(s)) ds$$

then;

$$\mu(t) \le \frac{1}{1 - c_1} \left(M_1 \left((1 + c_1) M_2 + c_2 \right) + c_2 + M_1 \int_0^t p(s) \Psi(\mu(s)) ds \right)$$

since $M_1 \geq 1$ Let us take the right-hand side of the above inequality as $\nu(t)$. Then we have.

$$c = \nu(0) = \frac{1}{1-c_1} \left(M_1 (M_2(1+c_1)+c_2) + c_2) \right) \text{ and } \mu(t) \le \nu(t) \quad ; \quad \forall t \in J \text{ then,}$$

$$\nu'(t) = \frac{1}{1-c_1} M_1 p(t) \Psi\bigl(\mu(t)\bigr)$$

By using H(5) we get :

$$\nu' < \omega(t) \Psi\big(\nu(t)\big)$$

IJOA. Vol. 1, Issue No. 2, Year 2021, www.usms.ac.ma/ijoa Copyright ©2021 by International Journal on Optimization and Applications

This implies that

$$\int_{\nu(0)=c}^{\nu(t)} \frac{d\tau}{\Psi(\tau)} < \int_0^b \omega(s) ds < \int_c^\infty \frac{d\tau}{\tau + \Psi(\tau)}$$

This implies that there exists a constant K such that $\nu \leq K$, $t \in J$ and $\mu \leq K$, $t \in J$. Since for every $t \in J$ we have $||u_t|| \leq \mu(t)$ then

$$||u||_{\infty} := \sup\{|u(t)|; -r \le t \le b\} \le K$$

Where K depends only on b and on the functions p and Ψ . This shows that Ω is bounded.

As a consequence of theorem 2.4 (Leray-schauders's fixed point) we deduce that \mathcal{N} has a fixed point which is a solution of (1).

REFERENCES

- [1] K. HILLAL and K. EZZINBI, Nonlocal differential inclusion with nondense domain and multivalued perturbations in Banach spaces.
- [2] K. EZZINBI and X. FU, Existence and regularity of solutions for some neutral partial differential equations with nonlocal conditions.
- [3] M. BENCHOHRA and S. K., NTOUYAS Nonlocal Cauchy Problems for Neutral Functional Differential and Integrodifferential Inclusions in Banach Spaces.
- [4] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital.
- [5] K. Yosida, Functional Analysis. 6th ed. Springer, Berlin, 1980.
- [6] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980.