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Abstract—In this paper, we establish the Ulam-Hyers stability
and Ulam-Hyers-Rassias stability for fuzzy integrodifferential
equations under Caputo gH-differentiability by using the fixed
point method.

Index Terms—Fuzzy Ulam-Hyers-Rassias stability, Caputo
fractional derivatives, fuzzy fractional integrodifferential equa-
tions, fixed point theory.

I. INTRODUCTION

In this paper, we will propose fuzzy Ulam-Hyers-Rassias
stability for the two kinds of fuzzy fractional integrodifferen-
tial equations of order α ∈ (0, 1) with generalized Hukuhara
derivative under form{

C
gHDαa+u(t) = f(t, u(t)) +

∫ t
a
g(t, s, u(s))ds, t ∈ [0, a],

u(0) = u0 ∈ Ed.
(1)

Where C
gHDαa+ is the Caputo’s generalized Hukuhara deriva-

tive, f : [0, a] × Ed −→ Ed, is continuous on [0, a] and
g : [0, a]× [0, a]× Ed −→ E is continuous on [0, a]× [0, a].
We wish to mention that the theory of fuzzy fractional integral
and differential equations have recently been the subject of
important studies (see e.g [1]–[11] ). In [12], Shen et al
studied the Ulam stability problems of the first order linear
fuzzy differential equations under some suitable conditions,
and in [13], Diaz et al has introduced a fixed point theorem of
the alternative for contractions on a generalized metric space,
with which Shen et al in [14] proved the Ulam stability of
fuzzy differential equations. Since the number of documents
dealing with the stability of Ulam for fuzzy fractional inte-
grodifferential equations (FFIEs) is rather limited compared
to the number of publications concerning FFIEs, we decide
to study by using the fixed point technique, the Ulam-Hyers-
Rassias stability for FFIEs.
Our results are inspired by the one in [15] where the fuzzy
Ulam-Hyers-Rassias stability of FFIEs is studied. The rest of
this paper is organized as follows: In section 2, we recall some
notations of the fuzzy number space, the fixed point theorem
and the basic notations of the Riemann-Liouville fractional
integral and Caputo fractional derivative for fuzzy functions.
The Ulam-Hyers-Rassias stability for fuzzy fractional inte-
grodifferential equations are discussed in Sections 3.

II. PRELIMINARIES

In this section, we introduce some definitions, theorems
and lemmas which are used in this paper. For more details,
we can see papers [3] [9] [12].

Definition 2.1: A function d : X×X −→ [0,+∞) is called
a generalized metric on X if and only if d satisfies:

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Theorem 2.2: (Banach) Let d : X × X −→ [0,+∞)

be a generalized metric on X and (X, d) is a generalized
complete metric space. Assume that T : X −→ X is a
strictly contractive operator with the Lipschitz constant
L < 1. If there exists a nonnegative integer n such that
d(Tn+1x, Tnx) <∞ for some x ∈ X, then the following are
true:

(i) the sequence Tnx converges to a fixed point x∗ of T ,

(ii) x∗ is the unique fixed point of T in
X∗ = {y ∈ X | d(Tnx, y) <∞},

(iii) if y ∈ X∗, then we have d(y, x∗) ≤ 1
1−Ld(Ty, y).

Lemma 2.3: Let ϕ : J −→ [0,+∞) be a continuous
function. We define the set

X := {x : J −→ RF | x is continuous function on J},

where RF is the space of fuzzy sets, equipped with the metric
d(x, y) = inf{η ∈ [0,+∞) ∪ {+∞} | D(x(t), y(t)) ≤
ηϕ(t), ∀t ∈ J}.
Then, (X, d) is a complete generalized metric space.

Let Kc(Rd) denote the family of all nonempty, compact and
convex subsets of Rd. The addition and scalar multilplication
in Kc(Rd) are defined as usual i.e, for A,B ∈ Kc(Rd) and
λR,

A+B = {a+ b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}
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Let Ed denote the set of fuzzy subsets of the real axis, if
ω : Rd −→ [0, 1], satisfying the following properties:
(i) ω is normal, that is, there exists z0 ∈ Rd such that
ω(z0) = 1,

(ii) ω is fuzzy convex, that is, for 0 ≤ λ ≤ 1

ω(λz1+(1−λ)z2) ≥ min{ω(z1), ω(z2)}, for any z1, z2 ∈ Rd,

(iii) ω is upper semicontinous on Rd,

(iv) [ω]0 = cl{z ∈ Rd : ω(z) > 0} is compact, where cl
denotes the closure in (Rd, | . |).
Then Ed is called the space of fuzzy number. For
r ∈ (0, 1], we denote [ω]r = {z ∈ Rd | ω(z) ≥ r}
and [ω]0 = {z ∈ Rd | ω(z) > 0}. From the conditions
(i) to (iv), it follows that the r − level set of ω, [ω]r, is
a nonempty compact interval, for all r ∈ [0, 1] and any ω ∈ E.

The notation [ω]r = [ω(r), ω(r)], denotes explicitly the
r − level set of ω, for r ∈ [0, 1]. We refer to ω and ω
as the lower and upper branches of ω, respectively. For
ω ∈ Ed, we define the lengh of the r − level set of ω as
len([ω]r) = ω(r)−ω(r). For addition and scalar multiplication
in fuzzy set space Ed, we have [ω1 + ω2]r = [ω1]r + [ω2]r,
[λω]r = λ[ω]r.

The Hausdorff distance between fuzzy numbers is given by

D0[ω1, ω2] = sup
0≤r≤1

{| ω1(r)− ω2(r) |, | ω1(r)− ω2(r) |}.

The metric space (Ed, D0) is complet metric space and the
following properties of the metric D0 are valid.

D0[ω1 + ω3, ω2 + ω3] = D0[ω1, ω2],

D0[λω1, λω2] =| λ | D0[ω1, ω2],

D0[ω1, ω2] ≤ D0[ω1, ω3] +D0[ω3, ω2],

for all ω1, ω2, ω3 ∈ Ed and λ ∈ Rd. Let ω1, ω2 ∈ Ed, if there
exists ω3 ∈ Ed such that ω1 = ω2 + ω3 then ω3 is called the
H-difference of ω1, ω2. We denote the ω3 by ω1 	 ω2. Let us
remark that ω1 	 ω2 6= ω1 + (−1)ω2.

Definition 2.4: The generalized Hukuhara difference of two
fuzzy numbers ω1, ω2 ∈ Ed (gH-difference for short) is
defined as follows:

ω1 	gH ω2 = ω3 ⇔
{

(i) ω1 = ω2 + ω3,
or (ii) ω2 = ω1 + (−1)ω3.

Let [0, a] be a compact interval in R+. Denote by diam[u(t)]r

the diameter of fuzzy set u, for t ∈ [0, a]. A function
u : [0, a] −→ Ed is called ω-increasing (ω-decreasing) on
[0, a] if for every r ∈ [0, 1] the function t 7−→ diam[u(t)]r is
nondecreasing (nonincreasing) on [0, a]. If u is ω-increasing
or ω-decreasing on [0, a], then we say that u is ω-monotone
on [0, a].

Definition 2.5:

Let t ∈ (a, b) and h such that t + h ∈ (a, b), then the
generalized Hukuhara derivative of fuzzy-valued function x :
(a, b) −→ Ed at t is defined as

DgHx(t) = lim
h−→0

x(t+ h)	gH x(t)

h
.

If DgHx(t) ∈ Ed satisfying last inequality, we say that x
is generalized Hukuhara differentiable (gH-differentiable for
short) at t.

Definition 2.6: Let x : [a, b] −→ Ed, the fuzzy Rieman-
Liouville integral of fuzzy-valued function x is defined as
follows:

(J αa+x)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds.

For a ≤ t, and 0 < α ≤ 1. For =α = 1, we set J 1
a = I , the

identity operator.
Definition 2.7: Let DgH ∈ C([a, b], Ed) ∩ L([a, b], Ed).

The fuzzy gH-fractional Caputo diffentiability of fuzzy-valued
function x ([gH]Ca − differentiable for short) is defined
as following:
C
gHDαa+x(t) = J 1−α

a+ (DgHx)(t) = 1
Γ(1−α)

∫ t
a
(t −

s)−α(DgHx)(s)ds,
where 0 < α ≤ 1, t > a.

Lemma 2.8: Suppose that x : [a, b] −→ Ed be a fuzzy
function and DgHx(t) ∈ C([a, b], Ed) ∩ L([a, b], Ed). Then

J αa+(CgHDαa+x)(t) = x(t)	gH x(a).

Lemma 2.9: Let u : [0, a] −→ Ed be a continuous function
on [0, a] and let α ∈ (0, 1), then the FFIE (1) is equivalent to
the following integral equation:

(1) If u is ω-increasing on [0, a], then

u(t) = ϕ(0) +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, (2)

(2) If u is ω-decreasing on [0, a], then

u(t) = ϕ(0)	 (−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds. (3)

III. MAIN RESULTS

In the sequel, our aim score is to present the results for the
existence and the stability of the problem (1). The methods
to solve these problems are quite similar. However, since the
conditions for the existence of solutions of fuzzy fractional
integrodifferential equations (2) and (3) are dissimilar, we shall
present the two kinds (2) and (3) in two separate subsections.
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A. Fuzzy Ulam-Hyers-Rassias stability for FFIEs (2)

Firstly, we present the definitions of fuzzy Ulam-Hyers
stability and fuzzy Ulam-Hyers-Rassias stability.

Definition 3.1: We say that the problem (2) is fuzzy Ulam-
Hyers stable, if there exists a constant Kf > 0 such that for
each ε > 0 and for each solution v ∈ C1([0, a], Ed) of the
following inequality
D
[
C
gHDαa+v(t), f(t, v(t)) +

∫ t
a
g(t, s, v(s))ds

]
≤ ε,∀t ∈

[0, a],
then, there exists a solution u ∈ C1([0, a], Ed) of problem (2)
with

D [v(t), u(t)] ≤ Kfε,

for all t ∈ [0, a]. We call Kf a Ulam-Hyers stability constant
of (2).

Definition 3.2: We say that the problem (2) is fuzzy Ulam-
Hyers-Rassias stable, if there exists a constant Cf > 0 such
that for each ε > 0 and for each solution v ∈ C1([0, a], Ed)
of the following inequality
D
[
C
gHDαa+v(t), f(t, v(t)) +

∫ t
a
g(t, s, v(s))ds

]
≤ ϕ(t),∀t ∈

[0, a],
then, there exists a solution u ∈ C1([0, a], Ed) of problem (2)
with

D [v(t), u(t)] ≤ Cfϕ(t),

for all t ∈ [0, a] and for some nonnegative function ϕ defined
on [0, a].

Remark 3.3: We observe that definition 3.2 ⇒ definition
3.1.

In the following, we shall prove that the FFIEs (2) is fuzzy
Ulam-Hyers-Rassias stable on bounded interval by the fixed
point theorem.

Theorem 3.4: Assume that f : [0, a] × Ed −→ Ed and
g : [0, a] × [0, a] × Ed −→ Ed are continuous functions
satisfying the following conditions:

(i) There exists a constant Lfg > 0 such that:

max {D[f(t, u), f(t, v)];D[g(t, s, u), g(t, s, v)]} ≤ LfgD[u, v],
(4)

for all each (t, s, u), (t, s, v) ∈ [0, a]× [0, a]× Ed.

(ii) There exists a constant K,C > 0 such that 0 <
LfgK(1+C) < 1 and let ϕ : [0, a] −→ [0,∞) be a continuous
function and increasing on [0, a] with:∫ t

a

ϕ(s)ds ≤ C.ϕ(t), ∀t ∈ [0, a], (5)

and
1

Γ(α)

∫ t

a

(t− s)α−1ϕ(s)ds ≤ Kϕ(t), ∀t ∈ [0, a], (6)

If a continuously ω-increasing function u : [0, a] −→ Ed

satisfies the following inequality

D

[
C
gHDαa+u(t), f(t, u(t)) +

∫ t

a

g(t, s, u(s))ds

]
≤ ϕ(t),

(7)

for any t ∈ [0, a], then there exists a unique ũ : [0, a] −→ Ed

of (2.2) such that

ũ(t) = u0+
1

Γ(α)

∫ t

a

(t−s)α−1(f(s, ũ(s))+

∫ s

a

g(s, r, ũ(r))dr)ds,

(8)
and

d[ũ(t), u(t)] ≤ 1

1− LfgK(1 + C)
, ∀t ∈ [0, a]. (9)

Proof:

Let us consider the space of all continuous fuzzy function
u : [0, a] −→ Ed by

X = {u : [0, a] −→ Ed | u is continuous on [0, a]},

equipped by the metric

d(u, v) = inf{C ∈ [0,+∞) ∪ {+∞} | D[u(t), v(t)] ≤
Cϕ(t)}, ∀t ∈ [0, a].

By lemma 2.3, we observe that (X, d) is also a complete
generalized metric space. We define an operator Q : X −→ X
by

(Qu)(t) = u0 +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, ∀t ∈ [0, a]. (10)

Because f and g are a continuous fuzzy functions, the right
hand side of (10) is also continuous on [0, a]. This yields that
Qu is continuous on [0, a]. So, the operator Q is well-defined.
To apply theorem 2.2 in the proof of this theorem, we need
the operator Q to be strict contractive on X. For any u, v ∈ X
and let Cuv ∈ [0,+∞) ∪ {+∞} such that

d(u, v) ≤ Cuv, ∀t ∈ [0, a].

Then, by the definition of d, we have

D[u(t), v(t)] ≤ Cuvϕ(t), ∀t ∈ [0, a]. (11)

From the definition of the operator Q and assumption (4)-
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(6), we have the following estimation

D[(Qu)(t), (Qv)(t)] = D[u0 +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, u0 +
1

Γ(α)

∫ t

a

(t− s)α−1(f(s, v(s))

+

∫ s

a

g(s, r, v(r))dr)ds],

≤ 1

Γ(α)

∫ t

a

(t− s)α−1D[f(s, u(s)), f(s, v(s))]ds

+
1

Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[g(s, r, u(r)), g(s, r, v(r))]dr)ds,

≤ Lfg
Γ(α)

∫ t

a

(t− s)α−1D[u(s), v(s)]ds

+
Lfg
Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[u(r), v(r)]dr)ds,

≤ LfgCuv
Γ(α)

∫ t

a

(t− s)α−1ϕ(s)ds

+
LfgCuv

Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

ϕ(r)dr)ds,

≤ LfgCuvKϕ(t) + LfgCuvCKϕ(t)

= LfgK(1 + C)Cuvϕ(t).

Hence

D[(Qu)(t), (Qv)(t)] ≤ LfgK(1 + C)Cuvϕ(t). (12)

So, by the definition of metric d, we get

d(Qu,Qv) ≤ LfgK(1 + C)d(u, v), for all u, v ∈ Ed.

Where 0 < LfgK(1 + C) < 1, hence the operator Q is
strictly contractive mapping on X.
For an arbitrary ω ∈ X and from the definition of X and Q,
it follows that there exists a constant 0 < Cω <∞ such that:

D[(Qω)(t), ω(t)] = D[u0 + 1
Γ(α)

∫ t
a
(t− s)α−1(f(s, ω(s))

+
∫ s
a
g(s, r, ω(r))dr)ds, ω(t)] ≤ Cωϕ(t),

for any t ∈ [0, a], since f, g and ω are bounded on [0, a], and
the minimum of ϕ(t) > 0 on t ∈ [0, a]. Then, we infer that
d(Qω,ω) ≤ Cω <∞. Therefore, according to (i) and (ii) of
theorem 2.2, there exists a continuously function ũ : [0, a] −→
Ed such that Qnω −→ ũ in the space (X, d) as n −→∞ and
Qũ = ũ, that ũ satisfies the problem (8) for any t ∈ [0, a].
Now, we shall confirm that {u ∈ X | d(ω, u) <∞} = X∗. For
an arbitrary u ∈ Ed, since u and ω are bounded on [0, a] and
mint∈[0,a] ϕ(t) > 0, there exists a constant 0 < Cu <∞ such
that D[ω(t), u(t)] ≤ Cuϕ(t) for any t ∈ [0, a]. Therefore, we
have d(ω, u) <∞ for any u ∈ Ed, that is {u ∈ X | d(ω, u) <
∞} = X∗. By theorem 2.2-(ii), we conclude that ũ is the
unique fixed point of Q on X.
On the other hand, from the inequality (7) it follows that

d(u,Qu) ≤ 1. (13)

Finally, by theorem 2.2− (iii) and from the estimation (13),
it implies that

d(ũ(t), u(t)) ≤ d(u,Qu)

1− LfgK(1 + C)
≤ 1

1− LfgK(1 + C)
,

which means the estimation (9) holds true for any t ∈ [0, a].
This completes the proof. �

B. Fuzzy Ulam-Hyers-Rassias stability for FFIEs (3)

Theorem 3.5: Suppose that the functions f, g and ϕ satisfy
all conditions as in theorem 3.4. Assume that for each t ∈
[0, a] and for each continuous fuzzy function z : [0, a] −→ Ed,
if the Hukuhara difference
z(0)	 (−1)

Γ(α)

∫ t
a
(t− s)α−1

(
f(s, z(s)) +

∫ s
a
g(s, r, z(r))dr

)
ds,

exists and a continuously ω-nonincreasing function v :
[0, a] −→ Ed satisfies

D[v(t), v0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, v(s))

+

∫ s

a

g(s, r, v(r))dr)ds] ≤ ϕ(t), (14)

for any t ∈ [0, a], where v0 = u0, then there exists a unique
solution û : [0, a] −→ Ed of the problem (3) which satisfies

û(t) = u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, û(s))

+

∫ s

a

g(s, r, û(r))dr)ds, (15)

and

d[û(t), v(t)] ≤ 1

1− LfgK(1 + C)
, (16)

for any t ∈ [0, a].

Proof:
We consider the complete generalized space (X, d) defined as
in the proof of theorem 2. Define the operator P : X −→ X
as follows:

(Pu)(t) = u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, t ∈ [0, a]. (17)

Since the function f and g is continuous on [0, a]

and the Hukuhara difference u0 	 (−1)
Γ(α)

∫ t
a
(t −

s)α−1
(
f(s, u(s)) +

∫ s
a
g(s, r, u(r))dr

)
ds exists, similary to

theorem 1, it follows that Pu is well-defined on [0, a] or Pu
is continuous on [0, a]. Now, we observe that the operator
P is strictly contractive on X. Indeed, for any u, v ∈ X and
let Cuv ∈ [0,+∞) ∪ {+∞} be an arbitrary constant with
d(u, v) ≤ Cuv for t ∈ [0, a], that is, let us assume that

D[u(t), v(t)] ≤ Cuvϕ(t), (18)
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for t ∈ [0, a]. Furthermore, from (17), (18) and by the Lips-
chitz condition of f and g, we have the following estimation:

D[(Pu)(t), (Pv)(t)] = D[u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, u(s))

+

∫ s

a

g(s, r, u(r))dr)ds, u0 	
(−1)

Γ(α)

∫ t

a

(t− s)α−1(f(s, v(s))

+

∫ s

a

g(s, r, v(r))dr)ds],

≤ 1

Γ(α)

∫ t

a

(t− s)α−1D[f(s, u(s)), f(s, v(s))]ds

+
1

Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[g(s, r, u(r)), g(s, r, v(r))]dr)ds,

≤ Lfg
Γ(α)

∫ t

a

(t− s)α−1D[u(s), v(s)]ds

+
Lfg
Γ(α)

∫ t

a

(t− s)α−1(

∫ s

a

D[u(r), v(r)]dr)ds,

≤ LfgCuvKϕ(t) + LfgCuvCKϕ(t)

= LfgK(1 + C)Cuvϕ(t).

Hence

D[(Pu)(t), (Pv)(t)] ≤ LfgK(1 + C)Cuvϕ(t). (19)

This means that d(Pu, Pv) ≤ LfgK(1 + C)d(u, v). Hence,
the operator P is a strictly contractive mapping on X by the
assumption 0 < LfgK(1 + C) < 1. Simalar to the theorem
3.4, we can show that for each ω ∈ X satisfies d(Pω, ω) <∞.
Hence, by theorem 1, it implies that there exists a continuously
function û : [0, a] −→ Ed such that Pnω −→ û in (X, d) as
n −→∞, and such that Pû = û, that is û satisfies (4.15) for
t ∈ [0, a]. Similar to the proof of theorem 3.4, we observe that
there exists a constant Cω > 0 such that D[ω(t), u(t)] ≤ Cω ,
for any t ∈ [0, a]. This means that d(ω, u) < ∞ for each
u ∈ Ed, or equivalently, {u ∈ X | d(ω, u) < ∞} = X∗.
Furthermore, by theorem 2.2, we imply that û is a unique
continuous function which satisfies (15).
Moreover, by theorem 2.2, we also obtain

d(û(t), u(t)) ≤ d(u, Pu)

1− LfgK(1 + C)
≤ 1

1− LfgK(1 + C)
,

which means the estimation (16) holds true for any t ∈ [0, a].
This completes the proof. �

IV. CONCLUSION

In this study, we are studied the Ulam-Hyers-Rassias sta-
bility for fuzzy intergodifferential equation via the fixed point
technique. This result can be used to study fractional fuzzy
differential equations with other types of derivative concepts in
fuzzy setting, for example, Riemann-Liouville and Hadamard
generalized Hukuhara differentiability.
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