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Abstract—In this paper we investigate the existence result
of solutions for boundary value problem of nonlinear fuzzy
fractional differential equations involving Caputo fuzzy fractional
derivatives. We conclude our work by presenting an illustrative
example.

Index Terms—Fuzzy numbers,Fuzzy functions,fuzzy fractional
integral,fuzzy fractional caputo derivative.

I. INTRODUCTION

Fractional differential equations (DEs) have received con-
siderable attention in the recent years due to their wide applica-
tions in the areas of applied mathematics, physics, engineering,
economy, and other fields. Many important phenomena in
electromagnetic, acoustics, viscoelasticity, electrochemistry,
and material science are well described by fractional DE [6],
[7], [8], [9], [10], [11].In general, most of fractional DEs
do not have exact solutions. Particularly, there is no known
method for solving fractional boundary value problems (BVPs)
exactly. As a result, numerical and analytical techniques have
been used to study such problems. It should be noted that much
of the work published to date concerning exact and numerical
solutions is devoted to the initial value problems for fractional
order ordinary DEs. The theory of BVPs for fractional DEs
has received attention quiet recently. The attention drawn to
the theory of existence and uniqueness of solutions to BVPs
for fractional order DEs is evident from the increased number
of recent publications.In the book by Kelley and Peterson [1]
the following result is established:

Theorem 1: ( [1],Theorem 7.7).Assume f : [a; b]×R −→ R
is continuous and satisfies a uniform Lipschitz condition with
respect to the second variable on [a; b] × R with Lipschitz
constant K; that is,

| f(t, x)− f(t, y) |≤ K | x− y |

for all (t, x), (t, y) ∈ [a; b]×R.if

b− a < 2
√

2√
K

then the boundary valued problem

y′′(t) = f(t, y(t)), t ∈ [a, b]

y(a) = A, y(b) = B A,B ∈ R

has a unique continuous solution.
In this work we want to extend the above result by consider-
ing a fractional Riemmann-Liouville derivative (we refer the

reader to [5] for the defnitions and basic results on fractional
calculus) instead of the classical operator y′′,i.e., we prove the
existence and uniqueness of solutions for the fuzzy fractional
diferential boundary value problem.

Dαx(t) = f(t, x(t)) t ∈ [a, b] (I.1)

x(a) = 0̃, x(b) = B B ∈ E1 (I.2)

Where 1 < α ≤ 2 and E1 is the collection of fuzzy numbers.

II. PRELIMINARIES

Definition 1: [4] A fuzzy number is mapping u : R −→
[0, 1] such that

1) u is upper semi-continuous
2) u is normal,that is, there exist x0 ∈ R such that u(x0) =

1
3) u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥

min{u(x), u(y)} for all x, y ∈ R and λ ∈ [0, 1].
4) {x ∈ R, u(x) > 0} is compact.

The α− Cut of a fuzzy number u is defined as follows:

[u]α = {x ∈ R/u(x) ≥ α}

We denote by E1 the collection of all fuzzy numbers.
Definition 2: [4] A fuzzy number u in a parametric form

is a pair of function (u(r), u(r)) with r ∈ [0, 1],which satisfy
the following requirements:

1) u(r) is a bounded nonincreasing lef continuous function
in [0, 1].

2) u(r) is a bounded nondecreasing lef continuous function
in [0, 1].

3) u(r) ≤ u(r) ∀r ∈ [0, 1]

Moreover,we also can present the r − cut representation of
fuzzy number as [u]r = [u(r), u(r)].

Definition 3: Let x, y ∈ E1,if there exists z ∈ E1 such
that,x = y + z then z is called the Hukuhara difference of x
and y, denoted by x� y.

Definition 4: According to the Zadeh’s extension principle,
the addition on E1 is defined by

(u⊕ v)(z) := sup
z=x+y

min{u(x), v(y)}

And scalar multiplication of a fuzzy number is given by

(k � u)(x) :=

{
u(x/k) , k > 0

0̃ , k = 0
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Definition 5: [4] Let f : [a, b] → E1 and t0 ∈ [a, b].We
say that f is Hukuhara differentiable at t0 if there exists
f ′(t0) ∈ E1 such that:
(1) f ′(t0) = limh→0+

f(t0+h)�f(t0)
h

= limh→0−
f(t0)�f(t0−h)

h
Or
(2) f ′(t0) = limh→0+

f(t0)�f(t0+h)
−h

= limh→0−
f(t0−h)�f(t0)

−h

Proposition 1: Let f : [a, b] −→ E1 be a function such that
[f(x)]

r
=
[
f(x; r), f(x; r)

]
for each r ∈ [0, 1]

1) If f is (1)-differentiable function,then [f ′(x)]
r

=[
f ′(x; r), f ′(x; r)

]
2) If f is (2)-differentiable function,then [f ′(x)]

r
=[

f ′(x; r), f ′(x; r)
]

Definition 6: [4] Let u = (u(r), u(r)), v = (v(r), v(r)) ∈
E1 with r ∈ [0, 1],then the Hausdorf distance between u and
vis given by
D(u, v) = sup

r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|}

Proposition 2: [4] D is a metric on E1 and has the following
properties:

1) (E1;D) is a complete metric space.
2) D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ E1.
3) D(ku, kv) = |k|D(u, v), ∀u, v ∈ E1 and k ∈ R.
4) D(u+w, v+z) ≤ D(u, v)+D(w, z), ∀u, v, w, z ∈ E1.

We denote by CF = C([a, b], E1) space of all fuzzy-valued
functions which are continuous on [a, b],and PK(R) is the
collection of all the compact subset of R.

Definition 7: F : [a, b] −→ E1 is strongly measurable if
∀α ∈ [0, 1],the set-valued mapping Fα : [a, b] −→ PK(R)
defined by Fα(t) = [F (t)]α is Lebesgue measurable A
function F : [a, b] −→ E1 is called integrably bounded, if
there exists an integrable function h such that |x| < h(t)
∀x ∈ F0(t).

Definition 8: Let F : [a, b] −→ E1. The integral of F on

[a, b] denoted by
∫ b

a

F (t)dt,is given by[∫ b
a
F (t)dt

]α
={∫ b

a
f(t)dt | f : [a, b] −→ Ris a measurable selection forFα

}
for all α ∈ [0, 1].

Definition 9: [5] Let f : [a, b] −→ E1 and 0 < α < 1,the
fuzzy Riemann-Liouville fractional integral is defined by

Iαa+f(t) :=
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α ds

Remark 1: Since[f(x)]
r

=
[
f(x; r), f(x; r)

]
for each

r ∈ [0, 1],then[
Iαa+f(t)

]r
=
[
Iαa+f(x; r), Iαa+f(x; r)

]
Where Iαa+f(t; r) := 1

Γ(α)

∫ t
a

f(s;r)

(t−s)1−α ds
And
Iαa+f(t; r) := 1

Γ(α)

∫ t
a

f(s;r)
(t−s)1−α ds

Definition 10: [5] Let f : [a, b] −→ E1,x0 ∈ [a, b] and

φ(x) =
1

Γ(α)

∫ x

a

f(s)

(t− s)1−α ds.

The function f is called fuzzy Riemann-Liouville fractional
differentiabl of order 0 < α < 1 at x0 if there exists an
element Dα

a f(x0) ∈ E1 such that
(1) Dα

a f(x0) = limh→0+
φ(x0+h)�φ(x0)

h

= limh→0−
φ(x0)�φ(x0−h)

h
Or
(2) Dα

a f(x0) = limh→0+
φ(x0)�φ(x0+h)

−h
= limh→0−

φ(x0−h)�φ(x0)
−h

For the sake of simplicity, a fuzzy-valued function f is
RL[(1) − α] − differentiable if it is differentiable,as in
definition(2.6), Case (1), and is RL[(2)−α]−differentiable
if it is differentiable as in definition (2.6),Case (2).

Remark 2: [5] Since[f(x)]
r

=
[
f(x; r), f(x; r)

]
for each

r ∈ [0, 1],then we have the following relations:
1)If f is RL[(1)− α]− differentiablefuzzy valued function
then,[
Dα
a+f(t)

]r
=
[
Dα
a+f(x; r), Dα

a+f(x; r)
]

1)If f is RL[(2)− α]− differentiablefuzzy valued function
then,[
Dα
a+f(t)

]r
=
[
Dα
a+f(x; r), Dα

a+f(x; r)
]

Where Dα
a+f(t; r) := 1

Γ(α)
d
dt

∫ t
a

f(s;r)

(t−s)1−α ds
And
Dα
a+f(t; r) := 1

Γ(α)
d
dt

∫ t
a

f(s;r)
(t−s)1−α ds

Definition 11: [5] Let f : [a, b] −→ E1 and x0 ∈ [a, b].
The function f is called fuzzy Caputo fractional differentiable
of order 0 < α < 1 at x0 if there exists an element
cDα

a f(x0) ∈ E1 such that:

cDα
a f(x0) =

1

Γ(α)

∫ t

a

f ′(s)

(t− s)1−α ds (II.1)

Then we say f is c[(1) − α] − differentiable if f is (1)-
differentiable, and f is c[(2) − α] − differentiable if f is
(2)-differentiable.

Remark 3: [5] Since[f(x)]
r

=
[
f(x; r), f(x; r)

]
for each

r ∈ [0, 1],then
1) If f is (1)-differentiable then,[
cDα

a+f(t)
]r

=
[
cDα

a+f(x; r),cDα
a+f(x; r)

]
2)If f is (2)-differentiable then,[
cDα

a+f(t)
]r

=
[
cDα

a+f(x; r),cDα
a+f(x; r)

]
Where cDα

a+f(t; r) := 1
Γ(α)

∫ t
a

f ′(s;r)

(t−s)1−α ds
And
cDα

a+f(t; r) := 1
Γ(α)

∫ t
a

f ′(s;r)
(t−s)1−α ds

III. MAIN RESULTS

We start by writing the boundary value problem (I.1)(I.2)
in its integral form.
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Lemma 1: Suppose that f is a continuous function. A
function x ∈ CF ([a; b]) is a solution of (I.1) (I.2) if and
only if x satisfes the integral equation

x(t) =
(t− a)α−1

(b− a)α−1
B +

∫ b

a

G(t, s)f(t, y(s))ds (III.1)

G(t, s) =

{
(t−a)α−1

(b−a)α−1 (b− s)α−1 − (t− s)α−1 a ≤ s ≤ t ≤ b
(t−a)α−1

(b−a)α−1 (b− s)α−1 a ≤ t ≤ s ≤ b

Proof 1:
Proof 2: By using the parametric form of fuzzy number

we have x(t) = (x(r), x(r)),then the problem (1.1) ,(1.2) is
equivalent to

(1.3)

{
Dαx(t; r) = f(t, x(t; r); r) t ∈ [a, b]
x(a; r) = 0(r), x(b; r) = B(r)

(1.4)

{
Dαx(t; r) = f(t, x(t; r); r) t ∈ [a, b]
x(a; r) = 0(r), x(b; r) = B(r)

It is well known that solving (I.3) is equivalent to solving the
integral equation
x(t; r) = c (t−a)α−1

Γ(α) + d (t−a)α−2

Γ(α−2) +
∫ t
a
G(t, s)f(t, x(t; r); r)ds

where c and d are some real constants.Now,d = 0 by the
first boundary condition.On the other hand, x(b; r) = B(r)
implies.
B(r) = c (b−a)α−1

Γ(α) +
∫ b
a

(b− s)α−1f(s, x(s; r); r)ds
which after some manipulations yields
c = Γ(α)

(b−a)α−1

(
B(r)−

∫ b
a

(b− s)α−1f(s, x(s; r); r)ds
)

.

x(t; r) = Γ(α)
(b−a)α−1

(
B(r)−

∫ b
a

(b− s)α−1f(s, x(s; r); r)ds
)

× (t−a)α−1

Γ(α) −
∫ t
a
(t− s)α−1f(t, x(t; r); r)ds

and the proof is complete.
Proposition 3: Let G be the Green function given in Lemma

(1) Then∫ b

a

| G(t, s) | ds ≤ (α− 1)α−1

Γ(α)αα+1
(b− a)α−1

Proof 3: It is known [2]Lemma (2.2) that G(t, s) ≥ 0 for
all t, s ∈ [a, b] Therefore∫ b
a
| G(t, s) | ds =

1
Γ(α)

∫ t
a

(
(t−a)α−1

(b−a)α−1 (b− s)α−1 − (t− s)α−1
)
ds

+ 1
Γ(α)

∫ b
t

(
(t−a)α−1

(b−a)α−1 (b− s)α−1
)
ds

= 1
Γ(α)

(
− (t−a)α−1

(b−a)α−1

(b−t)α−1

α + (t−a)α−1

(b−a)α
(t−a)α−1

(b−a)α−1

(b−a)α−1

α

)
+ 1

Γ(α)

(
− (t−a)α−1

α + (t−a)α−1

(b−a)α−1

(b−t)α−1

α

)
= 1

Γ(α)
(t−a)α−1(b−t)

α

We define g : [a, b]→ R by

g(t) =
(t− a)α−1(b− t)

α

Diferentiating the function g we immediately find that its
maximum is achieved at the point

t∗ =
(α− 1)b+ a

α

Moreover

g(t∗) =
(a− 1)α−1(b− a)α

α

wich complete the proof
Theorem 2: Assumef : [a; b] × E1 −→ R is continuous

and satisfes a uniform Lipschitz condition with respect to the
second variable on [a, b]×E1 with Lipschitz constant K that
is,

D (f(t, x(t)), f(t, y(t)) ≤ KD(x, y)

For all (t, x), (t, y) ∈ [a; b]× E1.

If
K(α− 1)α−1

Γ(α)αα+1
(b − a)α−1 < 1 then the boundary-value

problem
Dαx(t) = f(t, x(t)) t ∈ [a, b]

x(a) = 0̃, x(b) = B B ∈ E1

has a unique continuous solution.
Proof 4: Let CF the complete metric space of fuzzy

continuous functions defined on [a, b] with the distance D By
Lemma (2.1),y ∈ CF is a solution of (II.2),(II.3) if and
only if it is a solution of the integral equation

y(t) =
(t− a)α−1

(b− a)α−1
B +

∫ b

a

G(t, s)f(t, y(s))ds

Let T : CF −→ CF defined by

Ty(t) =
(t− a)α−1

(b− a)α−1
B +

∫ b

a

G(t, s)f(t, y(s))ds

for t ∈ [a; b].We will show that the operator T has a unique
fixed point.
Let x, y ∈ CF ,then

D(Tx(t), T y(t)) ≤
∫ b

a

|G(s, t)|D(f(x(s), s), f(y(s), s)))ds

≤
∫ b

a

|G(s, t)|KD(x(s), y(s))ds

≤ K(α− 1)α−1

Γ(α)αα+1
(b− a)α−1D(x, y)

where we have used Proposition 3 By (2.1) we conclude that T
is a contracting mapping on CF and by the Banach contraction
mapping theorem we get the desired result.

Remark 4: We note that when α = 2 in Theorem 2, one
immediately obtains Theorem 1 (apart from the restriction A =
0 (y(a) = 0), which we have to assume in order to consider
continuous solutions on [a, b] to (II.2).

Example 1: As an example we consider the initial-value
problem

D3/2(x(t; r), x(t; r)) = (sin(x(t; r)), sin(x(t; r))) t ∈ [0, 1]
(III.2)

(x(0; r), x(0; r)) = (0, 0) (x(1; r), x(1; r)) = 0. (III.3)
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Here f(t, x(t; r); r) = sin(x(t; r)).
And |sin(x(t))| ≤ 1 = K.
Since α = 3/2 we have.

1(α− 1)α−1

Γ(α)αα+1
(1− 0)α−1 =

3

4
π

1
3 32/3

The condition of theorem 2 is satisfied,thus the initial-value
problem (III.2) (III.3) has a unique solution.
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