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Abstract—In this paper, we will applied the Richardson itera-
tive method for solving the fuzzy linear equations. In addition, we
explain the efficiency of suggested method by solving a numerical
example as a fuzzy version of examples from classical circuit
analysis.

Index Terms—Fuzzy linear system; Fuzzy number; Richardson
iterative method; Circuit Analysis.

I. INTRODUCTION

Systems of linear equations find many real world applica-
tions in different areas scientifics, In this background, several
iterative method are developed because of their simplest im-
plementation and their lest cost of computational complexity.
The fuzzy set term first appeared in 1965 when Professor
Lotfi A. Zadeh of Berkeley University, USA, published an
article entitled Fuzzy Sets. He has since achieved many major
theoretical advances in the field and was quickly accompanied
by many researchers developing theoretical work.

In this paper, we think over a fuzzy linear system with an
arbitrary fuzzy number in parametric form and with a crisp co-
efficient matrix. Consequently, there is hugely of the numerical
iterative methods for the resolution of the fuzzy linear systems
such as: Gauss-Seidel (G-S), Jacobi (J), and Successive Over
Relaxation (SOR) iterative method[4,5]. Next, a first order
Richardson iterative method is presented for the fuzzy linear
systems nonsingular.

This manuscript will begin with a fundamental construct of
fuzzy number operation is bringed In Section 2. In Section 3,
the principal Section of the paper, a Richardson approach is
for solving crisp and fuzzy linear system. The suggested idea
is shown by solving a numerical example in the Section 4.
Finally,we will conclude our paper with a small conclusion
given in Section 5.

II. PRELIMINARIES

A. Fuzzy sets on the real line - Fuzzy numbers

We begin this section with some preliminary results for
fuzzy sets :

• The fuzzy sets on the real line R are caracteresed by
theirs membership functions ũ : R → [0, 1] ([2], [9], [8] and
[14]).

• we define by [ũ]α := {x ∈ R/ũ(x) ≥ α} and

[ũ]0 := cl({x ∈ R/ũ(x) > 0}) The α-cut (α ∈ [0, 1]) on the
fuzzy set ũ on R

whither the closure of the set X is denotes by cl(X).

• A fuzzy set ũ is called convex if

ũ(λx+(1−λ)y) ≥ min(ũ(x), ũ(y)), x, y ∈ R, λ ∈ [0, 1]

Let F(R) denotes de family of all fuzzy sets on R.
We tell that ũ ∈ F(R) is a fuzzy number, if and only if : its
membership function is defined as : (1) ũ is normal.

(2) ũ is convex.
(3) ũ is upper semicontinuous.
(4) The α-cut [ũ]0 is compact.
The set of all possible fuzzy numbers ũ shall be called

the fuzzy-number power set F(R) with the property F(R) ⊂
F(R).
• Particular fuzzy numbers :

i)A popular fuzzy number is triangular fuzzy number ã defined
by a triplet [a, α, β]. As well as

ã(x) =

{
1 + x−a

α ; a− α ≤ x ≤ a,
1 + a−x

β ; a ≤ x ≤ a+ β.

ii) A trapezoidal fuzzy number ã can be expressed as
[aL, aU , α, β] and its membership function is defined as :

ã(x) =


1 + x−aL

α ; aL − α ≤ x ≤ aL,
1 ; aL ≤ x ≤ aU .
1 + aU−x

β ; aU ≤ x ≤ aU + β.

• The definition of addition, soustraction and scalar multi-
plication on F(R) are as follows :
For ũ,ṽ ∈ F(R) and λ ≥ 0,

(ũ+ ṽ)(x) := sup
x1,x2∈R/x1+x2=x

min(ũ(x1), ṽ(x2)) (1)

(ũ− ṽ)(x) := sup
x1,x2∈R/x1−x2=x

min(ũ(x1), ṽ(x2)) (2)

(λũ)(x) :=

{
ũ(x/λ) if λ ∈ R− {0},
1{0}(x) if λ = 0.

(3)
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Fig. 1: Triangular and Trapezoidal Fuzzy Number

where 1{0} is an indicator.
we denote by K the set of all nonempty compact subset of R
and by KC the subsets of K consisting of nonempty convex
compact sets. Recall that

ρ(A,B) = min
a∈A
‖x− a‖

is the distance of the point x ∈ R from A ∈ K, and that
the Hausdorff separation ρ(A,B) of A,B ∈ k is defined as
ρ(A,B) = maxa∈A ρ(a,B).
The Hausdorff metric dH on K is defined by

dH(A,B) = max{ρ(A,B), ρ(B,A)}

.
The prolongement of this metric, the Hausdorff metric on
F(R) is defined by:

d∞(ũ, ṽ) = sup{dH(ũ[α], ṽ[α]) : 0 ≤ r ≤ 1}

B. Fuzzy linear systems

Definition 2.1:
The n× n linear system of equations

a11x1 + a12x2 + .....+ a1nxn = y1,

a21x1 + a22x2 + .....+ a2nxn = y2,

a31x1 + a32x2 + .....+ a3nxn = y1, (4)

an1x1 + an2x2 + .....+ annxn = yn,

These sets of equations will be defined by the following
matrix:

AX = Y (5)

.
where the coefficient matrix A = aij , 1 6 i, j 6 n is a

crisp n × n matrix and yi ∈ E1, 1 6 i 6 n This system is
called a fuzzy linear system (FLS).

C. Solution of fuzzy linear systems

For arbitrary x = (x(r), x̄(r)), y = (y(r), ȳ(r)) and real
number k > 0, the usual arithmetic operations of fuzzy
numbers, can be represented like this

1) (x+ y)(r) = x(r) + y(r)

2) ¯(x+ y)(r) = x̄(r) + ȳ(r).

3) ¯(kx)(r) = kx̄(r).
4) (kx)(r) = kx(r).

Definition 2.2:
We say that a fuzzy number vector (x1, x2, ...., xn)t given

by xi = (xi(r), x̄i(r)), 1 6 i 6 n, 0 6 r 6 1, is called a
solution of the FSLE if∑n

j=1 aijxj =
∑n
j=1 aijxj = yi,

n∑
j=1

āijxj =
n∑
j=1

āijxj = ȳi, (6)

Either the ith equation of the system (5):
ai1(x1, x̄1) + ...+ aii(xi, x̄i) + ...+ ain(xn, x̄n) = (yi, ȳi),

we have

ai1x1 + ...+ aiixi + ...+ ainxn = yi(r) (7)
āi1x1 + ...+ āiixi + ...+ āinxn = ȳi(r),

1 6 i 6 n, 0 6 r 6 1.

as what you see from (8) for any i we have two linear
systems that there can be prolonged to a 2n× 2n crisp linear
system as follows :

SX = Y (8)

→
[
T > 0 H > 0
H > 0 T > 0

] [
X
−X̄

]
=
[
Y
−Ȳ

]
.

where the nonnegative entries of A are contained in
T, and the absolute values of the non posetif entries
are contained in H and A = T − H furthermore assume
that T = L1+D1+U1. Thus we have S = L+D+U , where:

L=
[
L1 0
H L1

]
, D=

[
D1 0
0 D1

]
, U=

[
U1 H
0 U1

]
We now notice that the system of linear equation (9) is
a 2n×2n crisp linear system,then we can say that this system
can be solved in a unique way for X if and only if the matrix
S is invertible.
Yet that even though if the original matrix A is not singular,
S may be.
The next results point out the difficulties for getting the fuzzy
solution for a linear system.

Theorem 2.3: If the matrices A = T − H and T + H are
invertible, then The matrix S is also invertible.

Definition 2.4:
we note by X={(xi(r), x̄i(r)), 1 6 i 6 n} the unique

solution of SX = Y.
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Let the fuzzy number vector U= {(ui(r), ūi(r)), 1 6 i 6 n}
denote by

ui(r) = min{xi(r), x̄i(r), xi(1)} (9)
, ūi(r) = max{xi(r), x̄i(r), xi(1)},

Theorem 2.5:
Let S be invertible, if S−1 is nonnegative, then the unique

solution X of equation (9) is a fuzzy vector for arbitrary vector
Y continually.

III. THE FIRST-ORDER RICHARDSON ITERATIVE METHOD

A. The stationary Richardson method

Consider the following linear system

Ax = b (10)

The stationary first-order Richardson’s method is a simplest
iterative method together with a local parameter α for the
speed of iteration process. Its scheme is written like this:

x(k+1) = x(k) + αr(k), k ≥ 0 (11)

Here r(k) is the residual vector of the current iterate :

r(k) := b− x(k)

The following results are inspired from [8] and [10].

Theorem 3.1:
The stationary Richardson scheme is convergent iff

2Re(λi)
α|λi|2 � 1, for all i=1,...,n, and λi ∈ C denotes the

eigenvalues of the matrix A.
Theorem 3.2: Assume that, A has non negative real eigen-

values, orderly in a following way λ1 ≥ λ2 ≥ ... ≥ λn � 0.
Then, the stationary Richardson method (12) is convergent iff
0 ≺ α ≺ 2

λ 1
. furthermore, the optimal value of α is

αopt = 2
λ1+λ2

.
Corollary 3.3: In order that matrix A is symmetric positive

definite. Then the stationary Richardson method is convergent.
Remark 1: Despite of its convergence, the stationary

Richardson’s method has the inconvenience of being numeri-
cally unsteady.

B. The nonstationary Richardson method

More generally, permitting α in (12) according to on the
iteration index, the nonstationary Richardson method or semi-
iterative method is defined by

x(k+1) = x(k) + αkr
(k), k ≥ 0 (12)

The euclidean space Rn is equipped by the canonical scalar
product <.,.> and ||.|| denotes its corresponding norm.
Since r(k+1) = r(k) − αAr(k), it follows

||r(k+1)||2 = ||r(k)||2 − 2α < r(k), Ar(k) > +α2||Ar(k)||2

The optimal acceleration parameter α can be dynamically
computed at every step k by

d

dα
||r(k+1)||2 = 0

Fig. 2: A electrical circuit with fuzzy current and fuzzy source

We obtain the minimizer parameter by the next formula

αopt =
< r(k), Ar(k) >

||Ar(k)||2
(13)

Remark 2: The nonstationary Richardson method using (14)
to rating the acceleration parameter, is equally named the
gradient method with dynamic parameter.

Theorem 3.4: Let A be a symmetric and positive definite
matrix; then the nonstationary Richardson method is conver-
gent for each choice of the initial data x(0).

IV. NUMERICAL EXAMPLE IN CIRCUIT ANALYSIS

Consider a straightforward resistive circuit with fuzzy cur-
rent and a source fuzzified.

This circuit has a system of equations given by:

10Ĩ1 − 4Ĩ2 = (39 + r, 42− 2r)− (11 + r, 13− r)
−4Ĩ1 + 16Ĩ2 = (11 + r, 13− r) + (23 + r, 25− r). (14)

We can simplify system as:{
10Ĩ1 − 4Ĩ2 = (26 + 2r, 31− 3r)

−4Ĩ1 + 16Ĩ2 = (34 + 2r, 38− 2r)

Therefore S1 =

[
10 0
0 16

]
S2 =

[
0 −4
−4 0

]

and then S =


10 0 0 −4
0 16 −4 0
0 −4 10 0
−4 0 0 16

, Ỹ =


26 + 2r
34 + 2r
31− 3r
38− 2r



S−1 =


1
9 0 0 1

36
0 5

72
1
36 0

0 1
36

1
9 0

1
36 0 0 5

72

 Ĩ =


71
18 + 1

6r
29
9 + 1

18r
79
18 −

5
18r

121
36 −

1
12r



Ĩ1 = ( 71
18 + 1

6r,
79
18 −

5
18r), Ĩ2 = ( 29

9 + 1
18r,

121
36 −

1
12r)
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Fig. 3: The exact solution of the system in example

In our case, the matrix A is symmetric definite positive
with eigenvalues 8 and 18. Next, the optimal of the minimizer
parameter is 2

18+8

Using the Richardson successive recursion, we obtain the
approximate solution given by

Fig. 4: The approximate solution of the system in example

V. CONCLUSION

In this this work, we presented the first-order Richardson
approach applied to crisp systems of linear equations. Next,
we adapted this method to fuzzy systems of linear equations.
Finally, a pratical example of circuit analysis is given to high-
light the utility of iterative methods in the fuzzy framework.
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