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Abstract—In this paper we deal with cancer control via a
treatment model. A set-valued control method is used, to design
the procedures leading to the formulation of model protocols, by
which cancer cells are eradicated. These protocols are provided
as selections of specific set-valued maps, depend upon the initial
stage of cancer, and divide into two inconsistent types responding
to two concerns: smoothness of treatment or minimal-dose
therapy.

Index Terms—Anti-angiogenic therapy, Chemotherapy, Set-
valued analysis, Viability theory

I. INTRODUCTION

Mathematical modelling of cancer, whether by ordinary
differential equations (ODEs), delay differential equations
[24], [31], partial derivatives equations (PDEs) [15], or even
stochastic differential equations [18], [19], [23], is useful not
only to gain a broad understanding of the tumor dynamics, but
also to investigate the problems associated to control cancer.

Several studies address the subject of cancer control, by
evoking different approaches, depending upon the model type.
All of them aim at seeking protocol laws to destroy cancer
cells, taking into account patient quality of life that can
be described by constraints on both healthy cells and the
administered drug doses.

For ODE models, as considered in this paper, numerous
studies use optimal control techniques, which consist of de-
signing a suitable criterion that involves minimizing cancer
cells, for examples:
• [4] controls the model in [3], in order to attain the goal

of reducing the amount of cancer cells, with acceptable
consequence on other states, by two different optimal
strategies: closed-loop SDRE (State-Dependent Ricatti
Equation), and open-loop method utilizing steepest de-
scent technique, the results of each are compared together,
to figure out which one is the better choice.

• [40] presents optimal control method results for four
different cancer models based on two sets of ODEs,
and contain either chemotherapy, immunotherapy, anti-
angiogenic therapy or combinations of these therapies,
the optimal control problems in questions are solved nu-
merically with Bock’s direct multiple shooting approach.

• [17] uses Pontryagin’s Maximum Principle to give an
optimal control of bang-bang form.

• [16] illustrates and discusses three different approach for
the control function: continuous, impulsive and hybrid.

• [29] uses for a well known model of the tumor-immune
system interaction [5], an optimization algorithm to find
optimal protocols as impulse-like drug administrations.

Much less frequently, there are studies using various differ-
ent approaches:

◦ [39] uses an asymptotic approach to give sufficient
conditions on both model and treatment parameters [5],
under which all trajectories in the positive orthant tend
to the tumor-free equilibrium point.

◦ [35] performs a quantitative analysis to discusses the
impact of delay in immunotherapy with interleukin-2, at
different antigenicity levels.

◦ [7] studies by the qualitative theory of differential equa-
tions the immunotherapeutic models of Kuznetsov and
Stepanova, in meta-models form (i.e., family of models),
and gives a general result on global eradication of cancer
under immunotherapy.

◦ [34] proposes a generalization of d’Onofrio’s background
model, where one parameter is assumed to be time
dependent, keeping all other parameters constant, and
done a qualitative-asymptotic analysis for the second-
order Taylor expansion of the model.

The approach using techniques of viability theory and set-
valued analysis has been initiated since [2], by providing
feedback protocols for immunotherapy model of [5], over a
finite horizon. This set-valued approach is performed in [1],
with respect to a wide class of ODEs. In the following, we give
a concise overview along with main facts that is noteworthy
to mention:

∗ The provided protocols aim at asymptotically eliminate
cancer cells, taking into account constraints that may
involve both injected drugs and cells in competition with
cancer cells.

∗ They are given in feedback form as selections of ade-
quately designed multifunctions, leading to two incom-
patible sets of protocol laws: one set is constituted of
continuous laws, for a smooth therapy, and another set
involves the minimal law for minimum drug doses, to
minimize their side-effects. The former laws can easily
be derived through universal formulas, while the latters
need solving a convex quadratic program. Both laws have
to be used depending on medical preferences.
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∗ Further the therapy protocol design, the approach allows
for a slight representation of cancer staging as known in
medicine, providing mathematical criteria to categorize
initial cancer stages given both their curability and the
kind of protocols that can be formulated. Thus by this
vision, a real medical strategy can be followed after
diagnosis of the disease. In the case of stage 1, the
applied medical protocols lead to decreasing cancer cells
in respect of patient quality of life. Stage 2 describes
cancers that can be amenable to stage 1 in a finite horizon,
only after what decreasing cancer cells are guaranteed.
While stage 3 characterizes cancers that are incurable,
corresponding to late-stage cancers. See technical details
in Section II.

In [6] we employ the previous set-valued method to address
two cancer therapies: namely anti-angiogenic therapy, through
its descriptive model established in [8], and chemo-immuno
therapy, as treated in [9].

Newer approaches that combine anti-angiogenic drugs with
chemotherapy, other targeted drugs, or radiation may work
better than using them alone (mono-therapy). Coupled anti-
angiogenic and chemotherapy promote a larger reduction
of the tumor than use chemotherapy alone [3]. Along the
same lines: [32] optimized and rationalized the association
between anti-angiogenic and cytotoxic drugs in the treatment,
to improve the anti-tumor efficacy, and [41] founded that
metronomic schedules are more effective in eliminating tu-
mour cells mainly due to their chemotherapeutic action on
endothelial cells and that more frequent, low drug doses
also entail outcomes in which the survival time of patient is
increased, and [42] used Hamilton-Jacobi-Isaacs (HJI) partial
differential equation, to derive a robust state feedback control
of the combined therapy of cancer using chemotherapy and
angiogenic inhibition, which guaranteed tumor contraction
maps as a function of the initial state of tumor and the
vasculature capacity. Other mixed therapies prove their capac-
ity to eliminate the entire tumor than either single modality
treatment, so it is in [11] which extracts situations where
neither chemotherapy nor immunotherapy alone are efficient to
control tumor growth. As well in [37] where such combination
treatments have been suggested as a promising alternative to
mono-therapy. In the study [36] both treatments concurrently
is favorable, due to the lower toxicity and greater immune
stability. For this combination therapy, as mentioned earlier,
we already approach it by means of chemo-immuno model
[9], so in article [6]. While [43] investigates how virotherapy
could enhance chemotherapy. A comprehensive review of
mathematical models for combination cancer therapy has been
carried out in [44]. A Multi-Objective approach identifies the
effective combination of therapeutic targets in cancer cells
[45].

For instance we choose as subject for the method by
[1], the model developed in [3], which combines between
anti-angiogenic and chemotherapy. Based on the competition
between normal cells and cancer cells as well as endothelial
cells associated to angiogenic process, which helps cancer cells

to growth. The effects of anti-angiogenic and chemotherapy
agents are obviously included in the model.

The current paper is organized as follows: Section II is an
overview of the set-valued control method developed by [1],
in Subsection III-A, a detailed description of model of [3] is
given, Subsection III-B is an application of the method to the
model, this is followed in Subsection III-C with numerical
examples and interpretations. We conclude in Section IV with
a discussions.

II. THE SET-VALUED CONTROL METHOD

This section is dedicated to summarize the general method
developed in [1], and which we are going to apply on Pinho’s
model. It deals with the specific class of ODEs

ẋ = f(x, τ) +B(x, τ)u, (1a)
τ̇ = τψ(x, τ), (1b)

conditioned initially at t = 0 by

x(0) = x0, (1c)
τ(0) = τ0. (1d)

• The state (x, τ) evolves in Rn+ × R+ :

∀t ∈ [0,∞[, (x(t), τ(t)) ∈ Rn+ × R+. (2)

This positivity condition represents the biological fea-
sibility of interactive cells densities xi, and tumor cell
burden τ . Note that (1b) involves that whenever τ0 = 0
then there are no cancer cells in the tissue for all time.
This is due to formula,

τ̄(t) = τ0e
∫ t
0
ψ(x̄(s),τ̄(s))ds, for all t ≥ 0,

for any solution (x̄, τ̄) of system (1).
• The control u = u(t) evolves in the constraints subset of

Rp, defined by

Kp = [0, umax
1 ]× · · · × [0, umax

p ], (3)

where the components ui stand for the doses of treat-
ments, that can be administered continuously by some
kind of portable pumps or straps to the patient’s blood
circulation, with the maximal tolerated doses umax

i .
• The functions f and ψ map Rn+ × R+ into Rn and R

respectively, ψ is supposed to be of class C1 on Rn+×R+,
while B(x, τ) ∈ Rn×p, and B′(x, τ) ∈ Rp×n denotes its
transpose.

We remark that the right-hand side of (1a) is linear with
respect to the control term u, while in the tumor dynamics
(1b), the tumor cell burden τ can be extracted, this structure
of the prototype (1) is well justified by a vast majority of ODE
models in the literature [10]–[14], [22], [27], [28], [30], [33],
[38], including the one of [3].

But there exists another varieties of models, like those
using a direct control on cancer cells, in [20] for example,
cancer cells can be killed by an external injection of ACI
(Adoptive Cellular Immunotherapy), depicted by the control
function ε2 = ε2(t), at a rate proportional to the product of the
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tumor cell burden, nevertheless, to approach this type of ODE
models, we can augment the general model 1 by a suitable
differential equation (for e.g., ε̇2(t) = −ε2(t) + v(t), where
v(t) is the auxiliary control).

Definition 2.1: We call a protocol any control
ū : [0,∞[→ Kp, such that system 1 has a solution
(x̄, τ̄) : [0,∞[→ Rn+ × R+, which satisfies

lim
t→∞

τ̄(t) = 0.

Definition 2.2: To each β > 0, we define the subset

Dβ = {(x, τ) ∈ Rn × R | ψ(x, τ) ≤ −β} . (4)

A solution (x̄, τ̄) of system 1 is said to be viable in the subset
Dβ on an interval [0, t̄[, if

∀t ∈ [0, t̄[, (x̄(t), τ̄(t)) ∈ Dβ .

Proposition 2.3: Whenever a control ū produces a viable
solution (x̄, τ̄) on [0,∞[ in the subset Dβ , for an appropriate
β, then it follows that ū is a protocol in the sense of Definition
2.1.

Proof 2.4: For t ≥ 0, (1b) is written

˙̄τ(t) = τ̄(t)ψ(x̄(t), τ̄(t)),

by viability of (x̄, τ̄) in Dβ we get the differential inequality

˙̄τ(t) ≤ −βτ̄(t), (5)

and by applying Gronwall’s lemma we get the exponential
estimate

0 < τ̄(t) ≤ τ0e−βt,

then
lim
t→∞

τ̄(t) = 0.

Remark 2.5: Inequality (5) implies that ˙̄τ(t) ≤ 0 for all t,
i.e., tumor cell burden τ̄ will be on the decreasing, which is
beneficial to the patient’s quality of life during the treatment.
The idea was first to give protocols to control tumor cell
burden τ to 0, but it turns out that such protocols keep τ on
decreasing sens overall [0,∞[, with the exponential estimate
τ0e−βt, where τ0 is the initial tumor cell burden and (−β) is
the decay rate.

Remark 2.6: The viability of the solution (x̄, τ̄) in the subset
Dβ , requires the initial condition ψ(x0, τ0) < 0, which is not
always satisfied, but we will deal with this necessary condition
in the next.
According to [1], such protocol may be characterized as a
selection of the set-valued map Cβ(·) defined on the subset
Dβ by

Cβ(x, τ) = {u ∈ Kp | 〈~(x, τ), u〉p ≥ `(x, τ)} , (6)

where functions ~ and ` are given by

~(x, τ) = −B′(x, τ)∇xψ(x, τ), (7a)

`(x, τ) = 〈∇xψ(x, τ), f(x, τ)〉n + τψ(x, τ)
∂ψ

∂τ
(x, τ), (7b)

with

• 〈· , ·〉i is the euclidean inner product in Ri, for i = p, n.
• ∇xψ(x, τ) is the gradient vector at point x :

∇xψ(x, τ) =

(
∂ψ

∂x1
(x, τ), · · · , ∂ψ

∂xn
(x, τ)

)′
.

To neatly give the set-valued characterization of protocol,
we consider prior the following notation and hypothesis, and
launch the ensuing theorem.

Ω− =
{

(x, τ) ∈ Rn+ × R+ | ψ(x, τ) < 0
}
. (8)

Hypothesis 2.7: The functions ~ and ` respectively given by
formulas (7a) and (7b) satisfy the statement below

∀(x, τ) ∈ Dβ ,∃u ∈ Kp : 〈~(x, τ), u〉p > `(x, τ).

Theorem 2.8: Let (x0, τ0) ∈ Ω− and β0 = −ψ(x0, τ0) > 0.
Assume that there exists β ∈]0, β0] for which Hypothesis 2.7 is
checked. The selection sβ of the set-valued map Cβ(·), having
expression

sβ(x, τ) = u ∈ Cβ(x, τ), such as ‖u‖ −→ min, (9)

provides a viable solution (x̄, τ̄) in the subset Dβ on a
maximal interval [0, tmax[.
If in addition

Hypothesis 2.9: lim sup
t→tmax

t<tmax

‖(x̄(t), τ̄(t))‖ <∞,

then tmax =∞, and sβ becomes a protocol.
Remark 2.10: The Hypothesis 2.9 will prolongs the local

viability of the solution (x̄, τ̄) over tmax, to be global on the
infinite interval [0,∞[, while Hypothesis 2.7 is introduced so
that the selection sβ will be well defined on Dβ , but it turned
out that Hypothesis 2.7 ensures in addition the continuity of
sβ on Dβ .
Now to do without the initial condition ψ(x0, τ0) < 0 of
Remark 2.6, we consider the following subset

Ω+ =
{

(x, τ) ∈ Rn+ × R+ | ψ(x, τ) ≥ 0
}
, (10)

and we associate to each κ > 0 the set-valued map Cκ(·),
having expression

Cκ(x, τ) = {u ∈ Kp | 〈~(x, τ), u〉p ≥ `(x, τ) + κ} , (11)

where the functions ~ and ` still given by formula (7a) and
(7b), then we set the ensuing theorem under the following
hypothesis

Hypothesis 2.11:

∀(x, τ) ∈ Rn+ × R+,∃u ∈ Kp : 〈~(x, τ), u〉p > `(x, τ) + κ.

Theorem 2.12: Assume that (x0, τ0) ∈ Ω+. The minimal
selection sκ of the set-valued map Cκ(·), having expression

sκ(x, τ) = u ∈ Cκ(x, τ), such as ‖u‖ −→ min, (12)

steers the system 1 from Ω+ to Ω− on the interval [0, t1],
provided that κt1 > ψ(x0, τ0). i.e., system 1 admits a solution
(x̄, τ̄) on [0, t1], such that (x̄(t1), τ̄(t1)) ∈ Ω−.
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Proof 2.13: For t ≥ 0,

d

dt
ψ(x̄(t), τ̄(t)) =

〈∇xψ(x̄(t), τ̄(t)), ˙̄x(t)〉n + ˙̄τ(t)
∂ψ

∂τ
(x̄(t), τ̄(t)),

next, we use the dynamics (1a) and (1b), and the formulas (7a)
and (7b) to write this differentiating in terms of the functions
~ and `, and the selection sκ :

d

dt
ψ(x̄(t), τ̄(t)) = `(x̄(t), τ̄(t))−

〈~(x̄(t), τ̄(t)), sκ(x̄(t), τ̄(t))〉p,

or the selection sκ is continuous (due to Hypothesis 2.11),
then by integrating from t = 0 to t1 we get

ψ(x̄(t1), τ̄(t1)) = ψ(x0, τ0)−∫ t1

0

[〈~(x̄(t), τ̄(t)), sκ(x̄(t), τ̄(t))〉p − `(x̄(t), τ̄(t))] dt,

since sκ is a selection of the map Cκ(·) then we have

ψ(x̄(t1), τ̄(t1)) ≤ ψ(x0, τ0)− κt1,

as
κt1 > ψ(x0, τ0),

it follows that
ψ(x̄(t1), τ̄(t1)) < 0.

Remark 2.14: The existence and the continuity of the
selection sκ require the Hypothesis 2.11.

Corollary 2.15: If the final state (x̄(t1), τ̄(t1)) satisfies
hypotheses of Theorem 2.8 as an initial one of system (1)
at time t0 = t1, then∣∣∣∣ sκ(x̄(t), τ̄(t)) if t ∈ [0, t1],

sβ(x̄(t), τ̄(t)) if t ∈ [t1,∞[,
(13)

is a protocol.
Remark 2.16: The protocol (13) will increase the corre-

sponding tumor cell burden τ̄ on an neighborhood of t0 = 0,
relatively to the interval [0, t1], which may be disadvantageous
to the patient’s quality of life in the beginning of treatment.
The condition κt1 > ψ(x0, τ0) can be regarded as a conflict
between the continuity of protocol (13) at (x̄(t1), τ̄(t1)), and
the minimality of period t1.
The protocol’s existence is independent of any condition
on initial state (x0, τ0), contrary to the decreasing of the
corresponding tumor cell burden τ̄ which closely depends on
sign of ψ(x0, τ0). This leads to stage the cancer as follow:
• ψ(x0, τ0) < 0: As pointed out in Remark 2.5, the

protocol (9) will decrease the cancer cells τ̄ on [0,∞[.
We then say that the cancer is non-advanced, or it is in
stage I.

• ψ(x0, τ0) ≥ 0: As Remark 2.16, the protocol (13) cannot
ensures the decreasing of cancer cells τ̄ on [0, t1]. In this
case we say that the cancer is advanced, or it is in stage
II.

The initial state (x0, τ0) is deterministic to distinguish treat-
ment strategies I and II. To cope with the advanced stage:
ψ(x0, τ0) ≥ 0, we must transfer (x0, τ0) to a state (x1, τ1) of
better stage, ie. ψ(x1, τ1) < 0 at a time t1 > 0, before joining
the interval of decreasing [t1,∞[. Ultimately, the study reveals
the key role that play the function ψ in cancer staging and
designing protocols (9) and (13).

III. APPLICATION TO THE MODEL

A. The model

The model [3] under study is a normalized system of five
ODEs, modeling continual interplay between normal cells:
NCs, endothelial cells: ECs, chemotherapy agent: CA, anti-
angiogenic agent: AA of concentration xi, respectively, for
i = 1, 2, 3, 4 (here the integer n = 4); and cancer cells: CCs
of concentration τ .

ẋ1 = f1(x, τ), (14a)
ẋ2 = f2(x, τ), (14b)
ẋ3 = δ + f3(x, τ), (14c)
ẋ4 = φ+ f4(x, τ), (14d)
τ̇ = τψ(x, τ), (14e)

initial conditions are given by

xi(t = 0) = xi0 ≥ 0, for i = 1, 2, 3, 4; (14f)
τ(t = 0) = τ0 ≥ 0. (14g)

Parameters δ = δ(t) and φ = φ(t) are the respective
instantaneous infusion doses of CA and AA. (δ, φ) is almost
continuous within numerical values of the reduced constraint
subset (here the number of therapeutic agents p = 2)

K2 =
[
0, δmax

]
×
[
0, φmax

]
, (15)

defined by

{(δ, φ) ∈ R2 | 0 ≤ δ ≤ δmax and 0 ≤ φ ≤ φmax}.

Infusion doses CA(δ) and AA(φ) are based on cyclophos-
phamide and TNP-470 respectively.

The model variables xi and τ are assumed to interact as
follows:

1) Normal cells.
a) NCs grow logistically in the absence of CCs and

AA,
b) CCs destroy NCs at a rate proportional to the

product of CCs,
c) CA kills NCs at a rate governed by Michaelis-

Menton kinetics with parameters p3 and a3.
2) Endothelial cells.

a) ECs increase logistically to normalized carrying
capacity,

b) CCs stimulate ECs to grow at a rate directly
proportional to CCs,

c) AA kills ECs at a rate again governed by
Michaelis-Menton term.
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3) Chemotherapy agent.

a) CA decays at a constant rate,
b) CA decreases due to its action on NCs and CCs at

a rates modeled by Michaelis-Menton dynamics.

4) Anti-angiogenic agent.

a) AA degrades at a constant rate,
b) AA decreases because of its action on ECs at a

rate again modeled by Michaelis-Menton factor.

5) Cancer cells.

a) CCs exhibit logistic proliferation rate with varying
carrying capacity depending on ECs: The ECs
increase the carrying capacity of the CCs,

b) NCs eliminate CCs at a rate proportional to the
product of NCs,

c) CA kills CCs at a rate in Michaelis-Menton form.

Under the above considerations, functions fi and ψ are ex-
pressed as

f1(x, τ) = α1x1(1− x1)− q1x1τ − p1(x2, x4)
x1x3

a1 + x1
,

(16a)

f2(x, τ) = βτ + α3x2(1− x2)− p3x2x4

a3 + x2
, (16b)

f3(x, τ) = −
[
ξ + d1

x1

a1 + x1
+ d2

τ

a2 + τ

]
x3, (16c)

f4(x, τ) = −
[
η + d3

x2

a3 + x2

]
x4, (16d)

ψ(x, τ) = α2

[
1− τ

1 + γx2

]
− q2x1 − p2(x2, x4)

x3

a2 + τ
,

(16e)

with

pi(x2, x4) = pi0 + pi1x2 + pi2x4, for i = 1, 2. (16f)

Table I describes the model terms, and Table II
lists the values of the positive constants parameters
αi, qi, ai, di, pij , γ, β, p3, ξ, and η (units are in days−1

except for the ai’s, and γ whose units are volume).
1 shows model interactions between the different interveners

x1, x2, τ , and with therapy agents x3, x4.

B. Explicit expressions of protocols

According to [3], for all non-negative initial state (14f) and
(14g), all solutions (x̄, τ̄) of model (14) remain in the non-
negative orthant

R5
+ = {(x1, x2, x3, x4, τ)′ ∈ R5 |
xi ≥ 0, for i = 1, 2, 3, 4; and τ ≥ 0},

so the model fulfills the positivity condition (2).
To give useful expressions of protocols (9) and (13) for the

model (14), we have to explicit functions ~ and `, given by

Entity Term Description
x1 α1x1(1 − x1) Logistic NCs growth

−q1x1τ NCs death by CCs
−p1(x2, x4)

x1x3

a1 + x1
NCs death by CA

per concentration of ECs and AA
x2 βτ CCs creation due to ECs

α3x2(1 − x2) Logistic ECs growth
−
p3x2x4

a3 + x2
ECs death by AA

x3 −ξx3 CA washout
−d1

x1x3

a1 + x1
CA combination with NCs

−d2
τx3

a2 + τ
CA combination with CCs

x4 −ηx4 AA washout
−d3

x2x4

a3 + x2
AA combination with ECs

τ α2τ

[
1 −

τ

1 + γx2

]
Logistic CCs growth

−q2x1τ CCs death by NCs
−p2(x2, x4)

τx3

a2 + τ
CCs death by CA

per concentration of ECs and AA
TABLE I

TERMS OF MODEL (14).

NCs CCs ECs

AACA

q1

q2

β

p3
p1

d1 p2
d2

α1 α2 α3

ηξ

Fig. 1. Interactions in model (14) between compartments of cells, NCs, CCs
and ECs, and compartments of agents, CA and AA.

(7a) and (7b), so we have to calculate partial derivatives of
function ψ as expressed by (16e).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ

∂x1
(x, τ) = −q2,

∂ψ

∂x2
(x, τ) =

α2γτ

(1 + γx2)2
− p21x3

a2 + τ
,

∂ψ

∂x3
(x, τ) = −p2(x2, x4)

a2 + τ
,

∂ψ

∂x4
(x, τ) = − p22

a2 + τ
,

∂ψ

∂τ
(x, τ) =

x3p2(x2, x4)

(a2 + τ)2
− α2

1 + γx2
,
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whence

`(x, τ) = −q2f1(x, τ)

+f2(x, τ)

[
α2γτ

(1 + γx2)2
− p21x3

a2 + τ

]
−p2(x2, x4)

a2 + τ
f3(x, τ)− p22

a2 + τ
f4(x, τ)

+τψ(τ, x)

[
x3p2(x2, x4)

(a2 + τ)2
− α2

1 + γx2

]
,

the operator B(x, τ) is represented by the matrix

B =

(
0 0 1 0
0 0 0 1

)′
,

then

~(x, τ) =

(
p2(x2, x4)

a2 + τ
,
p22

a2 + τ

)′
,

and so, set-valued maps Cβ(·) and Cκ(·) given by (6) and (11)
are expressed as follows

Cβ(x, τ) =

{
u ∈ K2

∣∣ p2(x2, x4)

a2 + τ
δ +

p22

a2 + τ
φ ≥ `(x, τ)

}
,

and

Cκ(x, τ) =

{
u ∈ K2

∣∣ p2(x2, x4)

a2 + τ
δ +

p22

a2 + τ
φ ≥ `(x, τ) + κ

}
,

then, selections sβ (9) and sκ (12) are defined on R4
+ × R+

by

sβ(x, τ) = (δ, φ) ∈ Cβ(x, τ), such as δ2 + φ2 −→ min,
(17)

and

sκ(x, τ) = (δ, φ) ∈ Cκ(x, τ), such as δ2 + φ2 −→ min.
(18)

To complete our analysis we have to check the Hypothesis 2.9
of Theorem 2.8, for that we will use the following estimations
of x̄i and τ̄ , taken from the proof of [3]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x̄1(t) ≤ 1,

x̄3(t) ≤ δmax

ξ
,

x̄4(t) ≤ φmax

η
,

x̄2(t) ≤M,

τ̄(t) ≤ 1 + γM,

where the constant M is given by

M =
1

2

(
1 +

γβ

α3

)
+

1

2

√(
1 +

γβ

α3

)2

+
4β

α3
,

then

‖(x̄(t), τ̄(t))‖ ≤ max

(
δmax

ξ
,
φmax

η
, 1 + γM

)
,

it follows that Hypothesis 2.9 is well checked.

Remark 3.1: For τ̄ we can also use the estimation

∀t ∈ [0, tmax[, τ̄(t) ≤ τ0,

then Hypothesis 2.9 can be reduced to

lim sup
t→tmax

t<tmax

‖x̄(t)‖ <∞.

Hypotheses 2.7 and 2.11 are kept to the next section to be
checked numerically.

C. Numerical simulations

In order to illustrate analytical results of previous section,
we propose to state model (14) at stages I and II. We use
the ordinary differential equations solver ode45 of matlab to
integrate model (14), concurrently with the quadratic program-
ming solver Quadprog to return numerical approximations of
selections (17) and (18).

The parameter values in Table II are taken into account of
the simulations.

Parameter Value
α1 0.0068 day−1

α2 0.01 day−1

α3 0.002 day−1

q1 0.00702 day−1

q2 0.00072 day−1

γ 0.1615
β 0.00371 day−1

a1 1.1
a2 4.6205
a3 4.6666
d1 0.0002 day−1

d2 0.032 day−1

d3 0.032 day−1

p10 1.2 × 10−7 day−1

p20 0.20581 day−1

p3 1.7143 day−1

p11 4.2 × 10−8 day−1

p12 1.0 × 10−7 day−1

p21 0.00431 day−1

p22 19.4872 day−1

ξ 0.01813 day−1

η 0.136 day−1

TABLE II
PARAMETERS OF MODEL (14).

The used numerical values of infusion rates of parameters
δ and φ are based on their actual doses per tumor mass:
mg/(kg)(day).

Respectively, the numerical results seen in Figures 2 and 3
correspond to the following particular initial stages I and II,
which belong subsets Ω− and Ω+, defined by (8) and (10).

I :

∣∣∣∣∣∣∣
x1

0 = 0.999998, x2
0 = 0.728255,

x3
0 = 0.181034, x4

0 = 0.00171038,

τ0 = 0.6,

(19a)

and

II :

∣∣∣∣∣∣∣
x1

0 = 1, x2
0 = 1,

x3
0 = 0.001, x4

0 = 0.1,

τ0 = 1.

(19b)
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1) The numerical approach in Figure 2 illustrates the effects
of the protocol on CCs, NCs, and ECs, which:

a) Reverses the growth of CCs and make it on strict
decreasing.

b) Keeps NCs which is viewed as indicator of the
patient’s health on acceptable levels.

c) Deprives CCs of useful ECs densities.
2) As Figure 3, it confirm Remark 2.16, CCs have a slight

growth at the start of therapy, precisely on the time
interval [0, 10].
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Fig. 2. Time evolution of CCs, NCs, and ECs, in absence of therapy: (δ, φ) ≡
0 and presence of therapy: (δ, φ) ≡ sβ(x̄(t), τ̄(t)), with β = 0.00584. (β
is the parameter introduced in Definition 2.2).
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Fig. 3. Behavior of cancer cells τ , in absence of therapy: (δ, φ) ≡ 0 and
presence of therapy: (δ, φ) ≡ (13), with t1 = 30 and κ = 10−5 ≈ 0. (κ is
very small that (13) be continuous, as in Remark 2.16).

IV. CONCLUSION

The set-valued method [1], [6] is adapted to control Pinho’s
model (14). Numerical simulations in Figures 2 and 3 agreed
with the theoretical characterization of the protocols (9) and
(13). The main advantages of this method over others is that
it:

1) Does not request complicated conditions to models
subject of study, just

a) The smoothness propriety of the function ψ, that
it be of class C1 on Rn+ × R+.

b) The upper limit Hypothesis 2.9, which can be given
by using comparison method, like the standard
Kamke comparison theory used in the proof of [3].

2) Solves the setting control problem in Definition 2.1, for
any value taken by the initial state (x0, τ0) in Rn+×R+,
even the system 1 is in advanced stage I: ψ(x0, τ0) ≥ 0,
we manage to build a protocol.

3) Gives continuous protocols on state feedback, with min-
imal norms (in the frame-work of set-valued analysis),
which constitute lively advantages to the patient over the
therapy session.

4) Provides protocols by doing simple selections, contrary
to those given by the optimal control theory, which uses
the result developed by Fleming and Rishel to establish
the existence of an optimal control, and the classical
Pontryagin’s Maximum Principle to characterize optimal
control, and some propositions to prove the uniqueness
of the optimality system, in which state system is
coupled with co-state system [9], [20], [21].

5) Does not require an analysis that puts into account the
parameter values, unlike the case if we seek to stabilize
the model (14) around its equilibrium points.
In [3] for example, the equilibrium points of sub-models
(in the absence of CA or AA) and the full-model (in
the presence of both CA and AA), depend on constant
parameters of Table II, and on variable parameters δ and
φ, and these parameters also determine the nature of the
equilibria.

6) Is applicable not perforce around the equilibrium points,
but to the entire dynamics of the system (free state x).

7) Is a qualitative analysis with non-specific system param-
eters, that can vary greatly from patient to another [11],
or can depend on time during the therapy for a given
patient [23].

8) Is useful to approach another problem situations, apart
from controlling cancer, inspired by the work carried
out in [1], and [6], [25] adapts a unified set-valued
method, to approach the asymptotic null-controllability
with mixed constraints on state and control.
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