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Abstract—This article delves into the use of factor analysis with
survey data, highlighting its robustness under diverse conditions
unique to survey research. It investigates the performance of these
techniques in practical scenarios, especially when confronted with
challenges, aiming to ascertain their ability to consistently and
accurately analyze survey data, despite its complexity. This study
seeks to enhance the practical application of these methods and
guarantee meaningful outcomes. Additionally, it addresses the
critical aspect of the reliability of measurement instruments in
this context.

Index Terms—Cronbach’s alpha coefficient, PCA, Bartlett test,
KMO test

I. INTRODUCTION

Factor analysis is a valuable tool for uncovering the under-
lying structures of multidimensional survey data. Yet, ensuring
the reliability of results hinges on the robustness of these
techniques under diverse conditions, including outliers, miss-
ing data, or non-normal distributions. This article investigates
the robustness of factor analysis in survey data analysis,
evaluating its performance with real-world data that frequently
present challenges. By assessing these techniques’ capability
to handle survey data accurately and consistently amid these
complexities, we seek to elucidate their practical utility and
provide guidelines for reliable and meaningful analyses.

II. THE RELIABILITY OF MEASURING INSTRUMENTS

Assessing internal consistency aims to enhance data quality
by identifying the most representative elements of the studied
concepts. This evaluation occurs in two stages:

1) Calculating Cronbach’s alpha coefficient allows for the
measurement of internal consistency within a set of
measurement indicators. This value evaluates the extent
to which an item can compromise the overall consistency
of a composite scale.

2) Removing items that weaken Cronbach’s alpha coeffi-
cient by adhering to a predefined decision rule.

This process aims to enhance the reliability of survey
measures by eliminating elements that could compromise the
overall consistency of the data.

Cronbach’s alpha is thus a measure of the internal con-
sistency of a measurement scale, commonly employed in
psychometrics.

α =
N

N − 1

(
1−

∑n
i=1 σ

2
ik

σ2
T

)
(1)

With:
• α is the Cronbach’s alpha coefficient,
• N is the number of elements (observations) in the scale,
• k is the number of elements in the scale (i.e., the number

of questions or items in the questionnaire),
• σ2

i is the variance of each individual item, and
• σ2

T is the total variance of the set of item scores.
Cronbach’s alpha is often used as a preliminary step before

conducting factor analysis. While it’s not a perfect conceptual
fit, alpha is sometimes interpreted as the average correlation
among all possible pairs of items within a group. A high alpha
value suggests strong internal correlation among items and
is typically used as a criterion to determine if further factor
analysis is justified. This measure is critical for evaluating
the internal consistency of items in a dataset, aiding in the
decision of whether factor analysis is appropriate for exploring
the data’s underlying structures.

For instance, imagine you have an 11-question question-
naire designed to gauge customer satisfaction with a prod-
uct. You’ve gathered responses from 12 customers to these
questions. These responses, detailed in the database provided
in Appendix 1, form the foundation for assessing customer
satisfaction with the product.

The table (database) can be represented schematically as
follows: 

x11 x12 · · · x1k
x21 x22 · · · x2k

...
. . .

. . .
xN1 xN2 · · · xNk

 (2)

We are dealing with a variable1 that is measured through a
series of questions, specifically 11 items, which together form
a measurement scale for this latent variable. Thus:

1Not directly observed
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• N = 12 represents the total number of observations,
i.e., the number of customers who responded to the
questionnaire.

• k = 11 corresponds to the number of items in the
measurement scale, each contributing to assessing the
latent variable.

• σ2
ik represents the variance of each item; with k = 11,

we need to calculate 11 individual variances to assess the
dispersion of responses for each question.

• σ2
T represents the total variance, i.e., the variance of the

cumulative item scores. In this case, we have a single
variance to calculate to evaluate the overall dispersion of
responses across all the items on the measurement scale.

To calculate individual variances, we use the command:
(Excel : =VAR.P(plage))

σ2
ik =

∑N
i=1(xik − x̄k)2

N
(3)

1) For example for k = 1:

σ2
i1 =

∑12
i=1(xi1 − x̄1)2

N
= 0, 139

2) Calculation of the sum of individual variances gives:
n∑
i=1

σ2
ik = 2.1458 ≈ 2.15

3) Calculation of score variance

σ2
T =

1

n

n∑
i=1

(yi − ȳ)2 = 6.521 ≈ 6.52 (4)

With yi is the sum of the responses of individual i
4) Calculating the alpha gives:

α =
11

11− 1

(
1− 2.15

6.52

)
= 0.738 ≈ 0.74

To evaluate the internal consistency of the latent variable
measurement scale, the Cronbach’s alpha parameter is used,
where 0 < α < 1.

We apply the following decision rule:

Cronbach’s alpha value α > 0.8 0.6 < α < 0.8 α < 0.6
Consistency High Moderately Weakly

Decision Acceptable Acceptable Unacceptable

Based on the calculations performed, the Cronbach’s alpha
coefficient falls between 0.6 and 0.8. This range indicates
that the test is acceptable, confirming the reliability of the
measurement scale for the latent variable under scrutiny. In
essence, this result underscores an alpha value within an
acceptable range, thereby affirming the internal consistency
of the measurement scale employed to evaluate the latent
variable.

0.6 < α = 0.74 < 0.8 ⇒ Acceptable measurement scale

This coefficient can also be calculated using another for-
mula:

α =
N × r̄

1 + (N − 1)× r̄
(5)

With :
• r̄ is the average correlation between all pairs of items.

r̄ =

∑
rij

Card(s)

• Card(s) is the number of correlation coefficients to
calculate: it is a Combination without Repetition:

Card(s) = CpN =

(
N

p

)
=

(
N

2

)
= C2

N

• Note that the correlation coefficient of PEARSON between
the variables X and Y is given by:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

With :
– n is the number of observations.
– xi and yi are the individual values of the variables
X and Y .

– x̄ and ȳ are the means of the variables X and Y
respectively.

Based on the previous data, we calculate Cronbach’s alpha
using the latter formula by following these steps:

1) We have 55 distinct correlation coefficients to calculate:(
11

2

)
=

11× 10

2
= 55

2) We therefore calculate the correlation matrix and we
are only interested in the inter-item coefficients (=CO-
EFFICIENT.CORRELATION(Matrix1;Matrix2)) for ex-
ample: r12 = −0.26

3) We calculate the average correlation: r̄ = 10.94
55 = 0.20

4) Alpha is given by:

α =
11× 0.20

1 + (11− 1)× 0.20
= 0.733 ≈ 0.73

III. PCA FACTORIZATION

A. Principle and methods

To refine the measuring instrument, factor analysis is es-
sential. This method aims to reduce the data’s dimensionality
by identifying the principal components that capture most of
the variance. By eliminating redundancy and distinguishing
significant variables from those with little impact on the data’s
variance, this analysis refines the measurement instrument.

Factor analysis also allows for visualizing relationships
between variables in a principal component space. This visual-
ization facilitates understanding the data’s underlying structure
and helps identify patterns and connections between different
variables.

IJOA ©2023



Various factor analysis techniques exist, each offering
unique nuances and approaches to better explore and interpret
multidimensional data.

Factor analysis simplifies result interpretation by condensing
many variables into a few. Often called the ”Dimension
Reduction Method,” this approach reduces data dimensions
into one or more ”super-variables,” also known as ”constructs.”
This transformation is crucial for understanding the data’s
underlying structure and simplifying result interpretation.

The most common factor analysis technique is Principal
Component Analysis (PCA). However, the choice between
PCA and other multidimensional analyses depends largely on
the data’s nature. For example, PCA is suitable for quantitative
data in a table format (n × p), where rows represent indi-
viduals and columns represent variables, such as data from
a coded questionnaire. This specific data structure is well-
suited for PCA to extract meaningful variable relationships
and efficiently reduce data dimensionality.

Principal Component Analysis (PCA) is a statistical method
used for data reduction. It involves calculating the eigenvectors
of the correlation or covariance matrix of the variables. These
eigenvectors describe uncorrelated linear combinations of the
variables, enabling data reduction while preserving most of
the variance. Moreover, examining PCA eigenvectors helps in
better understanding the data’s underlying structure.

PCA enables the construction of a new representation sys-
tem comprising linear combinations of the original variables,
facilitating information synthesis.

When applying PCA to analyse a questionnaire, it is crucial
to consider several questions:

• Proximity between individuals: Which individuals re-
sponded similarly to questions related to a specific vari-
able or concept?

• Resemblance between individuals: What answers show
similarities or differences among respondents?

• Relations between questions (items): What connections
exist between the various questions?

Thus, the primary objectives, based on the questionnaire
data, are to examine the similarity between responses related
to a specific concept to ensure a degree of homogeneity, and
to explore the variability among items to identify correlations
between them.

For example, if a concept (or variable) is measured by a
system of n items, PCA can construct a reduced representation
of this concept (or variable) comprising (p < n) items. This
new system will preserve the existing distances (relationships)
(internal coherence) between these items.

When implementing a PCA, the main result is:

1) Construct a set of main components (C1, C2, ..., Ck,
..., Cp), defined as linear combinations of the original
items (centered and scaled)2, of which we can assess the

2normed PCA

quality of information retrieval through the reproduced
inertia3 (λk)4.

C1 = a11z1 + a21z1 + · · ·+ ap1zp(λ1)
...

Ck = a1kz1 + a2kz2 + · · ·+ apkzk(λk)
...

Cp = a1pz1 + a2pz2 + · · ·+ appzp(λp)

With: zk is the value of the variable (Xk after centering
and scaling) specific to individual k.

2) We observe the decomposition of information into un-
correlated (orthogonal) components.

3) Retain the principal component(s) that maximize the
square of their correlation with the variables in the
database.

Given that PCA yields multiple results, especially in the
context of analyzing questionnaire data measurement instru-
ments, it is crucial to propose a precise approach.

B. PCA Procedure
To analyze the similarity within a dataset, a geometric

approach involves studying the distances between individuals,
typically measured by the Euclidean distance between two
individuals (i, i’): d2(i, i′) =

∑
(xij − xi′j)2

Step 1 - Graphical study: This involves examining the graphical
representation of the point cloud and includes the follow-
ing stages:

– Center the data: This ensures that the center of inertia
G is located at the origin.

– Standardize the data: This process aims to make vari-
ables comparable, especially if they are expressed in
different scales or units5.

Step 2. Analyze the centred and standardized data table: Visual-
izing the data directly is not possible. To address this, you
need to find a more manageable representation (a better
projection) of the data. This involves finding a subspace
that summarizes the data, achieved through PCA.

– The goal is to project the cloud of 12 individuals
onto the first two inertia axes, often referred to as
the first factorial plane.

– This projection matrix helps identify the significant
factorial axes.

To achieve this, we calculate the eigenvalues (which
quantify the amount of information contained in each
axis) and the associated eigenvectors. This analysis aids
in determining the number of principal components that
should be considered.

Step 3. To accomplish this, we calculate the covariance matrix.
– If the data are on the same measurement scale

(binary, Likert), there is no need to center or scale;
you can simply calculate the correlation matrix.

3Dispersion around the barycenter; it is a multidimensional variance (cal-
culated on p dimensions)

4Eigenvalues
5This refers to a standardized PCA
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– In our case, we calculate the correlation matrix.

Figure 1. Correlation matrix

Step 4.1 Next, we reorganize the data into a new system. This is
achieved through the diagonalization6 of the covariance
matrix.
We calculate eigenvalues and eigenvectors7 from the
correlation matrix (covariance matrix on centered values).
(Excel =eVECTORS(C18:M28;100;FAUX)).

Figure 2. Calculation of eigenvalues and eigenvectors

Step 4.2 Calculate the proportion of variation explained by each
eigenvalue and the cumulative percentage explained. For
example, 33.92% represents the contribution of C1 (facto-
rial representation) to the total variability. An alternative
method is to construct a graph (Scree Plot) that illustrates
the successive differences between the eigenvalues.

The four components—C1, C2, C3, and C4—explain
78.43% of the variation, which is a relatively high per-
centage.

Step 5.1 Load the total weight matrix: This matrix will provide us
with the loadings =VecteursP*RACINE(ABS(ValeursP)).

6The diagonal matrix is formed from the eigenvalues.
7An eigenvector of a linear transformation f is any vector x such that

f(x) = λx

Figure 3. Total weight matrix

For instance, the first principal component Ĉ1 can be
calculated using the elements of the first eigenvector.

Ĉ1 = −0.06Q1 + 0.36Q2 + · · ·+ 0.57Q11

Ĉ2 = −0.55Q1 + 0.71Q2.+ · · · − 0.39Q11

...
...

Ĉ11 = 0.00Q1 + 0.00Q2.+ · · ·+ 0.00Q11

Step 5.2 This PCA is termed ”Without rotation.” It involves re-
taining the p = 4 principal components, which account
for 78.43% of the total variability.
It is now important to recalculate the eigenvector/score
matrix only for the main p factors (components).

Step 6.1 Perform a rotated factor analysis: Obtain a clearer rep-
resentation of each item’s contribution to the selected
factor. Here, we opt for an orthogonal Varimax rotation
( =VARIMAX(matrix of components;100))
There are several orthogonal rotation methods as well,
such as Quartimax, Equamax, and Parsimax, among
others.

– The interpretation of principal components involves
identifying the variables that are most strongly cor-
related with each component Ĉp.

– A correlation greater than 0.5 in absolute value is
considered significant.

– Ĉ1 is the linear combination of variable Q that
exhibits the maximum variance (among all linear
combinations).
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– More precisely, the coefficients following
a11,a12, . . . ,a1p are determined to maximize
the variance, while ensuring that the sum of
the squares of the coefficients equals one, i.e.,

A′1A1 =
p∑
j=1

A2
1j = 1

– This constraint is necessary to obtain a unique solu-
tion.

7→ The Ĉ1 exhibits a strong correlation with three initial
variables. It rises alongside the scores of Q6, Q8, and Q7,
indicating a simultaneous variation in these three criteria
(items). An increase in one of them tends to coincide with
increases in the others.
7→ Moreover, Ĉ1 exhibits the highest correlations with
Q8 (0.953) and Q6 (0.933). Based on these correlations,
we can assert that this principal component primarily
reflects these two items, suggesting that it serves as a
measure (or construct) of these variables.

• Ĉ2 is the linear combination of variable Q that captures
as much of the remaining variation as possible, with the
additional constraint that its correlation with Ĉ1 is 0.

• More precisely, we define a21,a22, . . . ,a2p to maxi-
mize the variance of this new component, while ensuring
that the sum of the squared coefficients

∑
j = 1pa22j = 1,

and with the additional constraint that these components

are uncorrelated: cov(C1, C2) =
p∑
k=1

p∑
l=1

a1ka2lσkl =

A′1ΣA2 = 0.
7→ Ĉ2 decreases as the scores of Q4, Q10, and Q11 in-
crease. This component can be interpreted as a construct
that combines these three items.

• In this example, we assume that the variable Q is mea-
sured by different items (Q1, Q2, . . . , Q11).

• The application of PCA without rotation resulted in
retaining 4 principal components that explain a total
variability of 78.43% (Eigenvalues > 1).

• Following rotation (Varimax), we conclude that:
– Ĉ1 alone captures 33.92% of the variance (eigen-

value = 3.7315). This factor is primarily represented
by: Q6, Q7, Q8.

– Ĉ2 alone captures 16.32% of the variance (eigen-
value = 1.795) and contributes to a cumulative vari-
ance of 50.25%. This factor is mainly represented
by: Q4, Q10, Q11.

– Ĉ3 alone captures 15.77% of the variance (eigen-
value = 1.734) and contributes to a cumulative vari-
ance of 66.02%. This factor is mainly represented
by: Q1, Q9.

– Ĉ4 alone captures 12.41% of the variance (eigen-
value = 1.305) and contributes to a cumulative vari-
ance of 78.43%. This factor is mainly represented
by: Q2, Q3, Q5.

• Q is measured by 4 constructed, non-collinear (orthogo-
nal) components. Consequently, regressions can be per-
formed.

• Each construct is a linear combination of the items that
constitute it.

IV. DIAGNOSTIC TOOLS

When conducting Principal Component Analysis (PCA),
it’s often necessary to explore various approaches to reach
a satisfactory solution. This may involve multiple analyses to
assess result relevance.

A crucial step is reviewing the correlation matrix. This
involves checking for excessively high correlations between
variables and evaluating the overall quality of the data repre-
sentation.

An important criterion is that each variable should have
a factor loading greater than 0.30 for at least one factor,
indicating a significant contribution to the data structure.

This process may require iteration, repeating the analysis
until a simple and satisfactory solution is found that effectively
summarizes the data structure.

The evaluation of PCA’s relevance includes a subjective
element: does grouping these elements make sense?

After rotation, there are many potential solutions, making it
challenging to determine a single ”correct” one. The solution
should be seen as a plausible proposition consistent with the
data, rather than an absolute ”answer.”

These considerations lead to two distinct situations:
1) When variables are perfectly correlated, a single factor

axis can restore all (100%) of the available information.
2) Conversely, if variables are pairwise independent (i.e.,

orthogonal), the number of factors needed is equal to
the number of variables.

To validate this data reduction, it is essential to calculate
certain indicators:
• Bartlett’s sphericity test, typically conducted before im-

plementing PCA.
• The Kaiser-Meyer-Olkin (KMO) index, typically evalu-

ated after PCA has been conducted.
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These indicators verify the validity of the data reduction
approach and ensure the robustness of the results obtained.

A. Sphericity test

This test aims to determine the extent to which the cor-
relation matrix < of the data (observed matrix) significantly
deviates from the unit matrix (theoretical matrix under the null
hypothesis H0).

Decision rule :{
H0 : |<| = 1
H1 : |<| 6= 1

⇔
{
H0 : Determinant of < = 1
H1 : Determinant of < 6= 1

Test statistic :

χ2 = −(n− 1− 2p+ 5

6
)× ln |<|

Under H0, it follows a χ2 distribution with [p × (p− 1)

2
]

degrees of freedom.
If the test result leads to rejecting the null hypothesis H0

(significantly different from H0), this implies that there are
very strong redundancies in the data, indicating that they only
contain one type of information (|<| 6= 1). In this case, the
test statistic is such that χ2 < χ2θ.

If the test result incorrectly leads us to reject the ”accepted”
null hypothesis H0 (|<| = 1), PCA will not be very useful
because the variables are nearly orthogonal pairwise. In this
case, χ2c > χ2θ.

Bartlett’s test for sphericity should not be confused with
Bartlett’s test for equality of variances, as they are two distinct
tests despite their similar names.

B. The KMO index

The Kaiser-Meyer-Olkin (KMO) test assesses whether it is
feasible to find a meaningful factor analysis of the data. In
this context, the index compares the raw correlations with the
partial correlations.

The concept behind partial correlation is that the raw
correlation between two variables is influenced by the other
(p− 2) variables.

Partial correlation is used to assess the net relationship
between two variables by eliminating the influence of the other
variables.

Decision rule :
The index KMO takes values between 0 and 1.
Test statistic:

kmo =

∑
i

∑
j 6=i r

2
ij∑

i

∑
j 6=i r

2
ij +

∑
i

∑
j 6=i a

2
ij

• If the KMO index is close to 0, partial correlations
are similar to raw correlations, indicating that effective
data reduction is not possible and that the variables are
pairwise orthogonal.

• If the KMO index is close to 1, it indicates that we can

of ACP is as follows:

KMO < 0.5 0.5− 0.6 0.6− 0.7
Unacceptable insufficient poor

KMO 0.7− 0.8 0.8− 0.9 0.9− 1
Moderately Good Excellent

Table I
KMO INDEX DECISION RULE

To perform this test in Excel, we first need to calculate
the matrix of partial correlations by inverting the correlation
matrix (denoted as F ), which is then multiplied by the square
root of the diagonal of matrix F with the addition of the
identity matrix twice.

The KMO index is calculated using two matrices: the cor-
relation matrix and the partial correlation matrix. Specifically,
the KMO index is equal to the ratio of the sum of the squares
of the correlations to the sum of the squares of the partial
correlations.

Figure 4. Calculation of the KMO index

Based on the results from our hypothetical data, a KMO
index of 0.28 indicates a relatively poor fit of the data for this
technique. This suggests that the variables in the dataset are
not highly interdependent and are not suitable for dimensional
reduction using Factor Analysis.

In essence, a KMO value below 0.5 typically indicates
that Factor Analysis may not be appropriate or reliable for
that particular dataset. This suggests that alternative analysis
methods might be more suitable, or that the data itself may
need to be revised or transformed for better utilization in this
analytical context.

C. Study of the distributions of constructed variables

The goal is to calculate the ”average” score obtained by each
individual on the different items related to the same construct.
This is done to test the normality of the constructs obtained
from the PCA analysis.

In practice, we need to create one or more new variables
(factors) called scores. These scores are then used to study the
distribution of the constructs.

In Stata, we use the command predict score1, score to
calculate these scores based on the results of the PCA (i.e.,
after rotating the PCA).

Analyzing the distributions of the newly generated variables
is crucial. It is important to visually inspect and compare these
distributions to a Gaussian distribution.

To do this, providing descriptive statistics of the scores is
essential, as it offers a detailed overview of these new vari-
ables. Additionally, for visual representation, creating graphs
that illustrate the distribution of scores is necessary. This
typically involves generating a histogram of scores with a
normal distribution curve and plotting a quantile-quantile plot
(q-q plot) to assess the normality of the data.

obtain an excellent summary of the information on the 
first factorial axes.

In practice : The decision rule adopted within the framework
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Figure 5. Distribution of the first principal component

The analysis of this graph confirms that the latent variable
named ”score1” does not follow a normal distribution, as
indicated by its lack of symmetry and its leptokurtic shape.

CONCLUSION

In this study, we investigated the application of factor
analysis to survey data, emphasizing its robustness in dealing
with various challenges encountered in real-world scenarios.
Our findings indicate that despite the unique context of data
collection, these techniques demonstrate a remarkable ability
to accurately and coherently process complex data. While
their use in such contexts requires careful attention, it remains
viable and fruitful for uncovering the underlying structures of
multidimensional data.

This study underscores the significance of considering the
reliability of measurement instruments in surveys, as it di-
rectly impacts the quality of the analyzed data. By outlining
key recommendations for conducting reliable analyses, we
aim to assist practitioners and researchers in adopting robust
methodologies, thereby ensuring the meaningful and reliable
interpretation of results.

In conclusion, this comprehensive exploration of the ro-
bustness of factorial techniques in survey data sheds light on
their practical utility. It also underscores the ongoing need for
research aimed at enhancing these methods, while highlighting
their relevance and potential for accurate and meaningful
analyses in complex survey data scenarios.
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V. ANNEXE

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Score
1 1 1 1 1 1 1 1 1 1 1 1 11
2 1 1 1 1 1 1 1 1 0 1 0 9
3 1 0 1 1 1 1 1 1 1 0 0 8
4 1 1 1 0 1 1 0 1 1 0 0 7
5 1 1 1 1 1 0 0 0 1 0 0 6
6 0 1 1 0 1 1 1 1 0 0 0 6
7 1 1 1 1 0 0 1 0 0 0 0 5
8 1 1 1 1 1 0 0 0 0 0 0 5
9 0 1 0 1 1 0 0 0 0 1 0 4
10 1 0 0 1 0 1 0 0 0 0 0 3
11 1 1 1 0 0 0 0 0 0 0 0 3
12 1 0 0 1 0 0 0 0 0 0 0 2∑

10 9 9 9 8 6 5 5 4 3 1 69
Table II

EXAMPLE DATABASE

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0,447 0,577 0,577 0,577 0,707 1,000 1,183 1,183 1,414 1,732 3,317
0,447 0,577 0,577 0,577 0,707 1,000 1,183 1,183 -0,707 1,732 -0,302
0,447 -1,732 0,577 0,577 0,707 1,000 1,183 1,183 1,414 -0,577 -0,302
0,447 0,577 0,577 -1,732 0,707 1,000 -0,845 1,183 1,414 -0,577 -0,302
0,447 0,577 0,577 0,577 0,707 -1,000 -0,845 -0,845 1,414 -0,577 -0,302
-2,236 0,577 0,577 -1,732 0,707 1,000 1,183 1,183 -0,707 -0,577 -0,302
0,447 0,577 0,577 0,577 -1,414 -1,000 1,183 -0,845 -0,707 -0,577 -0,302
0,447 0,577 0,577 0,577 0,707 -1,000 -0,845 -0,845 -0,707 -0,577 -0,302
-2,236 0,577 -1,732 0,577 0,707 -1,000 -0,845 -0,845 -0,707 1,732 -0,302
0,447 -1,732 -1,732 0,577 -1,414 1,000 -0,845 -0,845 -0,707 -0,577 -0,302
0,447 0,577 0,577 -1,732 -1,414 -1,000 -0,845 -0,845 -0,707 -0,577 -0,302
0,447 -1,732 -1,732 0,577 -1,414 -1,000 -0,845 -0,845 -0,707 -0,577 -0,302

Table III
CALCULATION OF CENTERED VALUES

Figure 6. Inverse of the correlation matrix

Figure 7. Partial correlation matrix

Figure 8. Score matrix
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